Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a/\(\Leftrightarrow m\left(x-1\right)-\left(x-1\right)=-1\Leftrightarrow\left(m-1\right)\left(x-1\right)=-1\Rightarrow m-1\ne0\Leftrightarrow x\ne1\)
d/\(\Leftrightarrow m^2x-m^2-4-4mx+4m=0\Leftrightarrow m^2\left(x-1\right)-4m\left(x-1\right)=4\Leftrightarrow\left(x-1\right)m\left(m-4\right)=4\Rightarrow\left[{}\begin{matrix}m\ne0\\m\ne4\end{matrix}\right.\)