K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

a/ \(\left(m+1\right)^2x=\left(3m+7\right)x+2+m\)

\(\Leftrightarrow\left[\left(m+1\right)^2-\left(3m+7\right)\right]x=m+2\Leftrightarrow\left(m^2-m-6\right)x=m+2\)

* Với \(m=3\Rightarrow x\in\varnothing\)

* Với \(m=-2\Rightarrow x\in R\)

* Với \(m\ne3;m\ne-2\)\(\Rightarrow x=\frac{m+2}{m^2-m-6}=\frac{m+2}{\left(m+2\right)\left(m-3\right)}=\frac{1}{m-3}\)

KL: ...............................

b/ \(b\left(ax-b+2\right)=2\left(ax+1\right)\)

\(\Leftrightarrow\left(ab-2a\right)x=b^2-2b+2\)

Với \(ab-2a=0\Rightarrow b^2-2b+2=0.x\Leftrightarrow x\in\varnothing\)

Với \(ab-2a\ne0\Rightarrow x=\frac{b^2-2b+2}{ab-2a}\)

KL: ..........................

19 tháng 4 2020

a/sửa đề đi

b/\(\Leftrightarrow abx-b^2+2b=2ax+2\)
\(\Leftrightarrow ax\left(b-2\right)-b\left(b-2\right)=2\)

\(\Leftrightarrow\left(ax-b\right)\left(b-2\right)=2\)(*)

PT vô nghiệm khi \(\left[{}\begin{matrix}b=2\\ax=b\end{matrix}\right.\)

Vậy để PT có nghiệm thì \(\left\{{}\begin{matrix}b\ne2\\a\ne0\end{matrix}\right.\)

(*)\(\Leftrightarrow ax-b=\frac{2}{b-2}\)

\(\Leftrightarrow ax=\frac{b^2-2b+2}{b-2}\)

\(\Leftrightarrow x=\frac{b^2-2b+2}{ab-2a}\)

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

19 tháng 2 2022

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

9 tháng 5 2017

a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)

Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.

Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)

Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)

Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]

Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)

Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))

b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)

\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)

Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)

Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)

2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)

\(\Leftrightarrow a^2x+ab=b^2x-b^2\)

\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)

\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)

\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)

Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)

Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)

Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)

22 tháng 1 2018

mày éo viết được cái đề hẳn họi à ????

19 tháng 2 2019

Không chắc đúng hay không nha,tui mới lớp 7=(

\(x\left(a^2-b^2\right)+b\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)x+b\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)x+b\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-b\\ax-bx+b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\x=-\frac{b}{a-b}\end{cases}}\)

+Với a = -b,thì phương trình trở thành:

\(-b\left(-bx+b\right)=b^2\left(x-1\right)\)

\(\Leftrightarrow0=0\) (luôn đúng)

Vậy nếu a = -b thì phương trình có vô số nghiệm.

Với ax - bx + b = 0 thì \(x=-\frac{b}{a-b}=\frac{b}{b-a}\)

20 tháng 2 2018

a)    (x-1)(2x-1)=0

<=>2x^2 - 3x + 1 =0

Căn bằng hệ số ta có \(\hept{\begin{cases}m=2\\-\left(m+1\right)=-3\\1=1\end{cases}}\)<=>m=2