Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt{32^2+45^2-2\cdot32\cdot45\cdot cos60^o}\approx40,11\)
\(m_a=\dfrac{\sqrt{2\left(32^2+45^2\right)-40,11^2}}{2}\approx33,5\)
\(m_b=\dfrac{\sqrt{2\left(40,11^2+45^2\right)-32^2}}{2}\approx39,5\)
\(m_c=\dfrac{\sqrt{2\left(40,11^2+32^2\right)-45^2}}{2}\approx28,5\)
Chúc bn học tốt!
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
\(AH=\dfrac{2S_{ABC}}{BC}=2\sqrt{5}\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{5}\)
\(\Rightarrow BH=\dfrac{1}{3}BC\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BH}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BH}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}H\left(1;1\right)\\H\left(3;-3\right)\end{matrix}\right.\) (sử dụng công thức điểm chia đoạn thẳng theo tỉ lệ)
a: góc C=90-30=60 độ
Xét ΔBAC vuông tại A có cos B=AB/BC
nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)
=>AC=2cm
b: Xét ΔbAC vuông tại A có cos B=AB/BC
nên AB/BC=1/2
=>BC=2
=>AC=căn 3
Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề.
Câu 2: Gọi tọa độ điểm H(a,b)
Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)
Vì H là trực tâm tam giác ABC nên:
\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)
\(c^4-2\left(a^2+b^2\right)c^2+\left(a^2+b^2\right)^2=a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2-c^2\right)^2=a^2b^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2+b^2-c^2=ab\\a^2+b^2+c^2=-ab\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{ab}{2ab}=\frac{1}{2}\\cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{-ab}{2ab}=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C=60^0\\C=120^0\end{matrix}\right.\)