K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

góc C = 90-55=35 độ

a=20cm=BC

=>AC=sin(55).BC=sin(55).20=16.383 cm ( tam giác ABC vuông áp dụng lượng giác)

=> AB=cos (55). BC=cos(55).20=11.471 cm (tam giác ABC vuông áp dụng hệ thức lượng)

NV
27 tháng 7 2021

a.

Trong tam giác vuông ABC:

\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)

\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)

\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)

\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

a. 

$\widehat{C}=90^0-\widehat{B}=90^0-58^0=32^0$

$\cos B=\frac{c}{a}\Rightarrow c=a\cos B=72\cos 58^0=38,15$ (cm)

$\sin B=\frac{b}{a}\Rightarrow b=a\sin B=72\sin 58^0=61,06$ (cm)

b.

$\widehat{C}=90^0-\widehat{B}=90^0-40^0=50^0$

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{20}{\sin 40^0}=31,11^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{20}{\tan 40^0}=23,84^0$

 

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

c.

$\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{b}{\tan B}=\frac{15}{\tan 60^0}=5\sqrt{3}$ (cm)

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{15}{\sin 60^0}=10\sqrt{3}$ (cm)

d

$a=\sqrt{b^2+c^2}=\sqrt{21^2+18^2}=3\sqrt{85}$ (cm)

$\tan B=\frac{b}{c}=\frac{21}{18}=\frac{7}{6}$

$\Rightarrow \widehat{B}=49,4^0$

$\widehat{C}=90^0-\widehat{B}=40,6^0$

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:

$S_{ABC}=AH.BC:2=12.20:2=120$ (cm2)

Thông tin A=90 độ không có ý nghĩa gì trong bài.

22 tháng 9 2023

Diện tích ABC:

S = AH.BC : 2

= 12 . 20 : 2

= 120 (cm²)

NV
7 tháng 9 2021

Trong tam giác vuông ABC:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB\)

Trong tam giác vuông ABH:

\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=BC.sinB.cosB=6.sin55^0.cos55^0\approx2,8\left(cm\right)\)

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=BC.\left(cosB\right)^2=6.\left(cos55^0\right)^2\approx1,2\left(cm\right)\)

\(CH=BC-BH=6-1,2=4,8\left(cm\right)\)

NV
7 tháng 9 2021

undefined