Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)-10=0\)
Đặt: \(x+\dfrac{1}{x}=t\) ta có: \(\left(x+\dfrac{1}{x}\right)^2=t^2\Leftrightarrow x^2+2+\dfrac{1}{x^2}=t^2\Leftrightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow t^2-2-t-10=0\)
\(\Rightarrow t^2-t-12=0\)
\(\Rightarrow t^2-4t+3t-12=0\)
\(\Rightarrow t\left(t-4\right)+3\left(t-4\right)=0\)
\(\Rightarrow\left(t+3\right)\left(t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=4\end{matrix}\right.\)
Thay vào rồi giải tiếp nha bạn
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2}{\left(x^2-1\right)^2}-\dfrac{11\left(x^4-5x^2+4\right)}{\left(x^2-1\right)^2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-6x\left(x^2+2\right)+9x^2+\left(x^2+2\right)^2+6x\left(x^2+2\right)+9x^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow2\left(x^2+2\right)^2+18x^2-11x^4+55x^2-44=0\)
\(\Leftrightarrow2\left(x^4+4x^2+4\right)-11x^4+73x^2-44=0\)
=>\(-9x^4+81x^2-36=0\)
=>9x^4-81x^2+36=0
=>x^4-9x^2+4=0
=>\(x^2=\dfrac{9\pm\sqrt{65}}{2}\)
=>\(x=\pm\sqrt{\dfrac{9\pm\sqrt{65}}{2}}\)
\(\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}+\frac{\sqrt{2}+1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{\sqrt{2}}{\left(1+\sqrt{2}\right)\sqrt{2}}+\frac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{\sqrt{2}-1}{2+\sqrt{2}}-\frac{\sqrt{2}}{2+\sqrt{2}}+\frac{3+2\sqrt{2}}{2+\sqrt{2}}=\frac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{2+\sqrt{2}}=\frac{2+2\sqrt{2}}{2+\sqrt{2}}\) \(b,\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}=\left(\sqrt{x}-2\right)+\frac{10-x}{\sqrt{x}+2}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}=\frac{x-4+10-x}{\sqrt{x}+2}=\frac{6}{\sqrt{x}+2}\)
\(c,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
Đặt \(\dfrac{x+2}{x+1}=a;\dfrac{x-2}{x-1}=b\), pt trở thành:
\(a^2+b^2-\dfrac{5}{2}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}b\\a=2b\end{matrix}\right.\)
To be continued. . .
Câu 1:
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-2}-\dfrac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0\)
=>\(\dfrac{5}{6}\sqrt{x-2}=5\)
=>căn x-2=5:5/6=6
=>x-2=36
=>x=38
b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)
\(\Leftrightarrow5x^2-7x+6=0\)
hay \(x\in\varnothing\)
c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)
=>3x^2-5x+2=0
=>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
a: \(=3-2\sqrt{2}-\sqrt{2}+1+1+\dfrac{1}{2}\sqrt{2}\)
\(=-\dfrac{5}{2}\sqrt{2}+5\)
b: \(=\dfrac{x-4+10-x}{\sqrt{x}+2}=\dfrac{6}{\sqrt{x}+2}\)
c: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
ĐK: x khác 0
Ta có pt tương đương \(x^2+2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)-12=0\)
<=>\(\left(x+\dfrac{1}{x}\right)^2-\left(x+\dfrac{1}{x}\right)-12=0\)
<=>\(\left[{}\begin{matrix}x+\dfrac{1}{x}=-3\\x+\dfrac{1}{x}=4\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2+3x+1=0\left(1\right)\\x^2-4x+1=0\left(2\right)\end{matrix}\right.\)
Ta thấy pt (1)vô nghiệm
Pt(2) <=>\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
KL \(x=2+\sqrt{3}\), \(x=2-\sqrt{3}\)