Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(1\le x\leq 2\)
Ta có: \((\sqrt{2-x}+1)(\sqrt{x+3}-\sqrt{x-1})=4\)
\(\Leftrightarrow (\sqrt{2-x}+1).\frac{(x+3)-(x-1)}{\sqrt{x+3}+\sqrt{x-1}}=4\)
\(\Leftrightarrow (\sqrt{2-x}+1).\frac{4}{\sqrt{x+3}+\sqrt{x-1}}=4\Rightarrow \sqrt{2-x}+1=\sqrt{x+3}+\sqrt{x-1}\)
\(\Leftrightarrow (\sqrt{x+3}-2)+\sqrt{x-1}-(\sqrt{2-x}-1)=0\)
\(\Leftrightarrow \frac{x-1}{\sqrt{x+3}+2}+\sqrt{x-1}-\frac{1-x}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow \sqrt{x-1}\left(\frac{\sqrt{x-1}}{\sqrt{x+3}+2}+1+\frac{\sqrt{x-1}}{\sqrt{2-x}+1}\right)=0\)
Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơnm $0$
Do đó \(\sqrt{x-1}=0\Leftrightarrow x=1\) (thỏa mãn)
ĐK:\(-\frac{1}{2}\le x\le4\)
\(\sqrt{4-x}+\sqrt{2x+1}=3\)
\(\Leftrightarrow\sqrt{4-x}-\left(\frac{1}{2}x-2\right)+\sqrt{2x+1}-\left(-\frac{1}{2}x-1\right)=0\)
\(\Leftrightarrow\frac{4-x-\left(\frac{1}{2}x-2\right)^2}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{2x+1-\left(-\frac{1}{2}x-1\right)^2}{\sqrt{2x+1}+\frac{1}{2}x-1}=0\)
\(\Leftrightarrow\frac{\frac{-\left(x^2-4x\right)}{4}}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{\frac{-\left(x^2-4x\right)}{4}}{\sqrt{2x+1}+\frac{1}{2}x-1}=0\)
\(\Leftrightarrow\frac{-x\left(x-4\right)}{4}\left(\frac{1}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{1}{\sqrt{2x+1}+\frac{1}{2}x-1}\right)=0\)
Thấy: \(\frac{1}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{1}{\sqrt{2x+1}+\frac{1}{2}x-1}>0\)
\(\Rightarrow\frac{-x\left(x-4\right)}{4}=0\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
a.
\(\sqrt{x+4\sqrt{x}+4=5x+2}\)
\(\Rightarrow\sqrt{\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2}=5x+2\)
\(\Rightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\sqrt{x}+2=5x+2\)
\(\Rightarrow\sqrt{x}=5x\)
\(\Rightarrow x=25x^2\)
\(\Rightarrow x=0\)
Vậy nghiệm của phương trình là x = 0
b)
\(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2=10}\)
\(\Rightarrow\sqrt{x}-1-\sqrt{x}+2=10\)
\(\Rightarrow1=10\) (Vô lí)
Vậy phương trình đã cho vô nghiệm
7.
ĐKXĐ: ...
\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow10ab=3\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)
6.
ĐKXĐ: ...
\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+2b^2=3ab\)
\(\Leftrightarrow2a^2-3ab+2b^2=0\)
Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)
1/ \(\sqrt{2x+5}=\sqrt{1-x}\)\(\left(ĐKXĐ:1\ge x\ge-\frac{5}{2}\right)\)
\(\Leftrightarrow2x+5=1-x\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\left(TM\right)\)
KL:.......................
2/ Tương tự
3/ \(\sqrt{2x^2-3}=\sqrt{4x-3}\) \(\left(ĐKXĐ:x\ge\frac{3}{4}\right)\)
\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=2\left(TM\right)\end{matrix}\right.\)
4/ Tương tự
5/ Tương tự
6/ \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(ĐKXĐ:x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
KL:.................
5/
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)
Pt trở thành:
\(a-1=\frac{a^2+b^2}{2}-b\)
\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)
4/
ĐKXĐ: \(x\ge\frac{1}{5}\)
\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)
\(\Leftrightarrow x=2\)