K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

 ĐKXĐ : \(\orbr{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)

 \(\frac{x+3}{x-3}+\frac{36}{9-x^2}=\frac{x-3}{x+3}\)

\(\Rightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(36\right)}{x^2-9}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\) 

 \(\Rightarrow\left(x+3\right)^2-36-\left(x-3\right)^2=0\)

 \(\Leftrightarrow x^2+6x+9-36-x^2+6x-9=0\)

\(\Leftrightarrow12x-36=0\Leftrightarrow x=3\)(LOẠI)

 vậy tập nghiệm của phương trình là : S = rỗng

tk nka !!

15 tháng 4 2017

\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\) 

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2004}-\frac{x+2005}{2003}-\frac{x+2005}{2003}=0\)

 \(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\Leftrightarrow x=-2005\) 

15 tháng 4 2017

=> (x+1)/2004+1+(x+2)/2003+1=(x+3)/2002+1+(x+4)/2001+1
=> (x+2005)/2004+(x+2005)/2003=(x+2005)/2002+(x+2005)/2001
=> (x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=> x+2005=0
=> x=-2005

10 tháng 7 2017

ĐKXĐ : \(\hept{\begin{cases}x-3\ne0\\x+3\ne0\\9-x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)

\(\frac{x}{x-3}-\frac{x}{x+3}=\frac{-2x^2+x-3}{9-x^2}\)

\(\Leftrightarrow\frac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x^2-x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow2x^2-x+3=x^2+3x-x^2+3x\)

\(\Leftrightarrow2x^2-x+3=6x\)

\(\Leftrightarrow2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)(TMĐKXĐ)

8 tháng 7 2017

<=> x2-3x-x2-3x=-2x2+x-3 (x khác -3 và x khác 3)

<=> 2x2-7x+3=0

\(\Delta=7^2-4.2.3=49-24=25\)=> \(\sqrt{\Delta}=5\)

=> \(\hept{\begin{cases}x_1=\frac{7-5}{4}=\frac{1}{2}\\x_2=\frac{7+5}{4}=3\end{cases}}\)

ĐS: x1=1/2; x2=3

8 tháng 7 2017

x=3 (loại)

Đáp số: \(x=\frac{1}{2}\)

28 tháng 2 2016

x+1/x^2+x+1 -(x-1)/x^2+x+1=3/x(x^4+x^2+1)

đkxđ x khác 0

[(x+1)(x^2-x+1)-(x-1)(x^2+x+1)] /(x^2+x+1)(x^2-x+1)=3/x(x^4+x^2+1)

[(x^3+1)-(x^3-1)]/x^4+x^2+1=3/x(x^4+x^2+1)

nhân 2 vế pt cho x(x^4+x^2+1) ta được 

x(x^3+1-x^3+1)=3

<=> 2x=3

<=>x=3/2 (thỏa)

S={3/2}

28 tháng 2 2016

Đặt \(x^2+x+1=a\ne0vàx^2-x+1=b\ne0\)

\(\Rightarrow b-a=-2xvàb+a=2x^2+2\)

    và điều kiện \(x\ne0\)

thì  \(x\left(x^4+x^2+1\right)=xab\)

\(\Rightarrow PT\Leftrightarrow\frac{x+1}{a}-\frac{x-1}{b}=\frac{3}{xab}\)

              \(\Leftrightarrow\frac{bx\left(x+1\right)-ax\left(x-1\right)}{xab}=\frac{3}{xab}\)

             \(\Leftrightarrow bx^2+bx-ax^2+ax=3\)

             \(\Leftrightarrow x^2\left(b-a\right)+x\left(b+a\right)-3=0\)

             \(\Leftrightarrow2x-3=0\)

             \(\Leftrightarrow x=\frac{3}{2}\)(tm)

Vậy \(x=\frac{2}{3}\) là nghiệm của pt

4 tháng 8 2019
https://i.imgur.com/25z5XqV.jpg
4 tháng 8 2019

Giải nốt hộ đi

27 tháng 2 2020

1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)

=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)

=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)

=> \(9x+27+6=20x+36-21x+27\)

=> \(9x-20x+21x=27-27-6+36\)

=> \(10x=30\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)

=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)

=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)

=> \(20x-30-5x+15=24x+18-510\)

=> \(20x-5x-24x=18-510+30-15\)

=> \(-9x=-477\)

=> \(x=53\)

Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)

3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)

=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)

=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)

=> \(150x-30+40x+160=84x-60+180x-180\)

=> \(150x+40x-180x-84x=-60-180-160+30\)

=> \(-74x=-370\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

27 tháng 2 2020

cảm ơn nha

1) Ta có: x-4=2x+4

\(\Leftrightarrow x-4-2x-4=0\)

\(\Leftrightarrow-x-8=0\)

\(\Leftrightarrow-x=8\)

hay x=-8

Vậy: S={8}

2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)

\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)

\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)

\(\Leftrightarrow6x-3-2x-6x+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: S={-3}

3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)

Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)

\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)

\(\Leftrightarrow-4x^2-2x-18=0\)

\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)

\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)

Vậy: S=\(\varnothing\)

4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)

\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x-1-24+2x=0\)

\(\Leftrightarrow8x-25=0\)

\(\Leftrightarrow8x=25\)

hay \(x=\frac{25}{8}\)

Vậy: \(S=\left\{\frac{25}{8}\right\}\)

18 tháng 8 2020

\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)

\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)

\(\Leftrightarrow6x+12< 10x+20+15\)

\(\Leftrightarrow6x-10x< 20+15-12\)

\(\Leftrightarrow-4x< 23\)

\(\Leftrightarrow x>-\frac{23}{4}\)

Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)

\(\frac{x+2}{4}-x< \frac{1}{3}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow3x+6-12x< 4\)

\(\Leftrightarrow3x-12x< 4-6\)

\(\Leftrightarrow-9x< -2\)

\(\Leftrightarrow x>\frac{2}{9}\)

Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)

\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))

Xét hai trường hợp

1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)

2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )

Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)