Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
Em có cách này nhưng ko chắc đâu nha!
a) ĐK: x>-4
Đặt \(\sqrt{2x^2+x+9}=a>0;\sqrt{2x^2-x+1}=b>0\) thì:
\(a^2-b^2=2x+8>0\Rightarrow a>b\) (*)
\(PT\Leftrightarrow a+b=\frac{a^2-b^2}{2}\Rightarrow2\left(a+b\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(1\right)\\a-b=2\left(2\right)\end{cases}}\).
*Giải (1): Ta có; a = -b < b (do b >0), mâu thuẫn với (*), loại.
*Giải (2): \(\Leftrightarrow a=b+2\Leftrightarrow a^2=b^2+4b+4\)
\(\Leftrightarrow2\left(x+4\right)=4\sqrt{2x^2-x+1}+4\)
\(\Leftrightarrow\left(x+2\right)=2\sqrt{2x^2-x+1}\)
\(\Leftrightarrow x^2+4x+4=4\left(2x^2-x+1\right)\)
\(\Leftrightarrow7x^2-8x=0\Leftrightarrow7x\left(x-\frac{8}{7}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{8}{7}\left(TM\right)\end{cases}}\)
Note: Em ko chắc nha!
b)ĐK: x>-3
PT\(\Leftrightarrow2-\sqrt{\frac{1}{x+3}}+2-\sqrt{\frac{5}{x+4}}=0\)
\(\Leftrightarrow\frac{4-\frac{1}{x+3}}{2+\sqrt{\frac{1}{x+3}}}+\frac{4-\frac{5}{x+4}}{2+\sqrt{\frac{5}{x+4}}}=0\)
\(\Leftrightarrow\frac{4\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}=0\)
\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{4}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}\right]=0\)
Cái ngoặc to lớn hơn 0 (hiển nhiên)
Bí.
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)