Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 3 - x b = 2 - x
=>a ^ 4 + b ^ 4 = (a + b) ^ 4 và a - b=1
(=) a ^ 4 + b ^ 4 = a ^ 4 + 4a ^ 3b+6a ^ 2b ^2 + 4ab ^ 3 + b^4
và a - b =1
(=) ab(2a^2 + 2b^2 + 3ab) = 0 và a - b = 1
Xét a = 0, tương đương b = +-1
b = 0, tương đương a = +-1
2a^2 + 2b^2 + 3ab = 0 => HPt vo nghiem
vay ta co nghiem: x=2,x=3
\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)
=> x + 2 = 0 hoặc x + 5 = 0
=> x = -2 hoặc x = - 5
2, x^4 - 5x^2 + 4 = 0
x^4 - 4x^2 - x^2 + 4 = 0
x^2 ( x^2 - 4) - ( x^2 - 4) = 0
( x^2 - 1)( x^2 - 4) = 0
( x - 1 )( x + 1)( x - 2)( x + 2) = 0
=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2
Đúng cho mi8nhf mình giải tiếp cho
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)
a ) ( 3x - 4 )2 = 9 (x-1)(x+1)
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9
\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16
\(\Leftrightarrow\) -24x = -24
\(\Leftrightarrow\) x = 1
Vậy phương trình có nghiệm x = 1 .
a/\(\left(4x-1\right)\left(x+5\right)=x^2-25\Leftrightarrow4x^2+20x-x-5=x^2-25\Leftrightarrow3x^2+19x+20\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\-5\end{matrix}\right.\)
b/
\(2x^3-6x^2=x^2-3x\Leftrightarrow2x^3-6x^2-x^2+3x=0\Leftrightarrow2x^2\left(x-3\right)-x\left(x-3\right)=0\Leftrightarrow\left(2x^2-x\right)\left(x-3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}\\3\\0\end{matrix}\right.\)
c/\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left[\left(x^2+6x+9\right)x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\frac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3+6x^2+\frac{35}{4}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)
d/\(\left(x-1\right)^2=\left(2x+5\right)^2\Leftrightarrow\left(x-1\right)^2-\left(2x+5\right)^2=0\Leftrightarrow\left(x-1+2x+5\right)\left(x-1-2x-5\right)=0\Leftrightarrow\left(3x+4\right)\left(-x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+4=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\0\\-6\end{matrix}\right.\)
a) \(x^4+2x^3-12x^2-13x+42=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Ta có:
\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...........
mình bày cách làm thôi nhé ... còn lại bạn tự làm :)
a) Đặt x2 + 2x = t
pt <=> t2 - 3t + 2 = 0
<=> ( t - 1 )( t - 2 ) = 0
<=> ( x2 + 2x - 1 )( x2 + 2x - 2 ) = 0
nghiệm hơi xấu nên không giải :v
b) ( x - 2 )4 + ( x + 2 )4 = 32 ( cái này khai triển ra luôn )
<=> x4 - 8x3 + 24x2 - 32x + 16 + x4 + 8x3 + 24x2 + 32x + 16 - 32 = 0
<=> 2x4 + 48x2 = 0
<=> 2x2( x2 + 24 ) = 0
<=> x = 0 ( đến đây bạn tự hiểu nhá :D )
c) ( x + 3 )4 + ( x + 5 )4 = 16
Đặt t = x + 4
pt <=> ( t - 1 )4 + ( t + 1 )4 - 16 = 0
khai triển rồi rút gọn đặt ẩn phụ là ra ( chắc bạn học đến rồi ha )
d) ( 6 - x )4 + ( 8 - x )4 = 80
Đặt t = 7 - x
pt <=> ( t - 1 )4 + ( t + 1 )4 - 80 = 0
tương tự như ý d)
Đặt 3-x=a; 2-x=b
Theo đề, ta có: \(\left(a+b\right)^4=a^4+b^4\)
\(\Leftrightarrow2ab\left(2a^2+3ab+2b^2\right)=0\)
=>(3-x)(2-x)=0
=>x=3 hoặc x=2