Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực ra cũng EZ thôi :
\(\frac{6}{x^2-9}-1+\frac{4}{x^2-11}-1-\frac{7}{x^2-8}+1-\frac{3}{x^2-12}+1=0=>\)
\(\frac{15-x^2}{x^2-9}+\frac{15-x^2}{x^2-11}-\frac{15-x^2}{x^2-8}-\frac{15-x^2}{x^2-12}=0\)
=> \(\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}-\frac{1}{x^2-8}-\frac{1}{x^2-12}\right)=0\)
=>\(15-x^2=0=>x=\pm\sqrt{15}\)
Hình như còn nghiệm , any body help me ?
ĐKXĐ: \(\left\{{}\begin{matrix}x^2\ne9\\x^2\ne11\\x^2\ne8\\x^2\ne12\end{matrix}\right.\Leftrightarrow x\notin\left\{3;-3;\sqrt{11};-\sqrt{11};2\sqrt{2};-2\sqrt{2};2\sqrt{3};-2\sqrt{3}\right\}\)
Đặt \(x^2-11=a\)(Điều kiện: \(a\notin\left\{-2;0;-3;1\right\}\))
PT\(\Leftrightarrow\frac{6}{a+2}+\frac{4}{a}-\frac{7}{a+3}-\frac{3}{a-1}=0\)
\(\Leftrightarrow\frac{6}{a+2}-1+\frac{4}{a}-1+\frac{-7}{a+3}+1+\frac{-3}{a-1}+1=0\)
\(\Leftrightarrow\frac{6-a-2}{a+2}+\frac{4-a}{a}+\frac{-7+a+3}{a+3}+\frac{-3+a-1}{a-1}=0\)
\(\Leftrightarrow-\frac{a-4}{a+2}-\frac{a-4}{a}+\frac{a-4}{a+3}+\frac{a-4}{a-1}=0\)
\(\Leftrightarrow\left(a-4\right)\left(-\frac{1}{a+2}-\frac{1}{a}+\frac{1}{a+3}+\frac{1}{a-1}\right)=0\)
\(\Leftrightarrow a-4=0\)
hay a=4
\(\Leftrightarrow x^2-11=4\)
\(\Leftrightarrow x^2=15\)
hay \(x=\pm\sqrt{15}\)
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow3x^2+21x+36=0\)
\(\Leftrightarrow x=-3\)
a/ \(\Rightarrow x^2+9x=7\left(x+3\right)^2\)
\(\Rightarrow x^2+9x=7x^2+42x+63\).
\(\Rightarrow6x^2+33x+63=0\)
Có denta = 332 - 4.6.63 = -423 < 0
=> pt vô nghiệm
Vậy k có giá trị nào của x thỏa mãn biểu thức => \(x\in\phi\)
b) ĐK : ........
PT đã cho tương đương với :
\(\frac{3}{x-4+\frac{1}{x}}+\frac{2}{x+1+\frac{1}{x}}=\frac{8}{3}\)
Đặt x + 1/x + 1 = a
pt <=> \(\frac{3}{a-5}+\frac{2}{a}=\frac{8}{3}\)
giải pt với ẩn a
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
\(\Leftrightarrow\frac{\left(x+a\right)\left(3a^2x^2+a^2+8ax+x^2+3\right)\left(3a^6x^6+27a^6x^4+33a^6x2+a^6+72a^5x^5+24a^5x^3+72a^{5x}+27a^4x^6+459a^4x^4+441a^4x^2+33a^4+240a^3x^5+800a^3x^3+240a^3x+33a^2x^6+441a^2x^4+459x^2a^2+27a^2+75ax^5+240ax^3+72ax+x^6+33x^4+27x^2+3\right)}{\left(a^2+3\right)\left(a^6+33a^4+27a^{2+3}\right)\left(x^{2+3}\right)\left(x^6+33x^4+27x^2+3\right)}=0\)
mấy nhân tử sau ko cần chú ý đâu :)) chỉ cần chú ý đến x+a=0 <=>x=-a thôi :))
bài này đúng 100% nhé chỉ sợ gõ sai thôi, ko tin có thể dùng máy tính kiểm tra
ĐKXĐ:...
\(\Leftrightarrow x^2+\frac{4}{x^2}-4\left(x-\frac{2}{x}\right)-9=0\)
Đặt \(x-\frac{2}{x}=t\Rightarrow x^2+\frac{4}{x^2}=t^2+4\)
\(\Rightarrow t^2+4-4t-9=0\)
\(\Leftrightarrow t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{2}{x}=-1\\x-\frac{2}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-5x-2=0\end{matrix}\right.\) (casio)