Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
PT <=> \(\sqrt{4x^2-14x+16}-\text{ }\sqrt{x^2-4x+5}=x-1\)
Đẽ thấy x = 1 không là n* của pt . Chia cả hai vế cho x - 1
pt <=> \(\sqrt{\frac{4x^2-14x+16}{x^2-2x+1}}-\sqrt{\frac{x^2-4x+5}{x^2-2x+1}}=1\)
<=> \(\sqrt{\frac{4\left(x^2-2x+1\right)+12-6x}{x^2-2x+1}}-\sqrt{\frac{x^2-2x+1+4-2x}{x^2-2x+1}}=1\)
<=> \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}-\sqrt{1+\frac{4-2x}{x^2-2x+1}}=1\)
Đặt \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}=a;\sqrt{1+\frac{4-2x}{x^2-2x+1}}=b\) (a;b > 0 ) ta có hpt
\(\int^{a^2-3b^2=4+\frac{12-6x}{x^2-2x+1}-3-\frac{12-6x}{x^2-2x+1}=1}_{a-b=1}\)
Tự giải
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)
\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\sqrt{x-1}\left(6-3-2+1\right)=16\)
\(2\sqrt{x-1}=16\)
\(\sqrt{x-1}=8\)
\(\left(\sqrt{x-1}\right)^2=8^2\)
\(x-1=64\)
\(x=64+1=65\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)ĐK x lớn hơn hoặc bằng 1
\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(2\sqrt{x-1}=16\)
\(\sqrt{x-1}=8\)
\(x-1=64\)
\(x=65\)thỏa mãn
Giải PT
a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)
\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(12\sqrt{x} = 3\)
\(\Leftrightarrow\) \(\sqrt{x} = 4 \)
\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)
\(\Leftrightarrow\) \(x=16\)
b) \(\sqrt{x^2-2x-1} - 3 =0\)
\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)
\(\Leftrightarrow\) \(|x-1|=3\)
* \(x-1=3\)
\(\Leftrightarrow\) \(x=4\)
* \(-x-1=3\)
\(\Leftrightarrow\) \(-x=4\)
\(\Leftrightarrow\) \(x=-4\)
c) \(\sqrt{4x^2+4x+1} - x = 3\)
<=> \(\sqrt{(2x+1)^2} = 3+x\)
<=> \(|2x+1|=3+x\)
* \(2x+1=3+x\)
<=> \(2x-x=3-1\)
<=> \(x=2\)
* \(-2x+1=3+x\)
<=> \(-2x-x = 3-1\)
<=> \(-3x=2\)
<=> \(x=\dfrac{-2}{3}\)
d) \(\sqrt{x-1} = x-3\)
<=> \(\sqrt{(x-1)^2} = (x-3)^2\)
<=> \(|x-1| = x^2-2.x.3+3^2\)
<=> \(|x-1| = x-6x+9\)
<=> \(|x-1| = -5x+9\)
* \(x-1= -5x+9\)
<=> \(x+5x = 9+1\)
<=> \(6x=10\)
<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)
* \(-x-1 = -5x+9\)
<=> \(-x+5x = 9+1\)
<=> \(4x = 10\)
<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)
1) \(\sqrt{3-x}=3x-5\)
\(\Leftrightarrow\left(\sqrt{3-x}\right)^2=\left(3x-5\right)^2\)
\(\Leftrightarrow3-x=9^2-30x+25\)
\(\Rightarrow x=\frac{11}{9};x=2\)
2) \(x-\sqrt{4x-3}\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2x-x\)
\(\Leftrightarrow-\sqrt{4-x}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Rightarrow x=1;x=7\)
4) \(\sqrt{x+1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow x=3;x=0\)
\(\Rightarrow x=3;x=0\)
5) \(\sqrt{x^2-1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2-1=x^2+2x+1\)
\(\Rightarrow x=-1\)
6) \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)
\(\Leftrightarrow x=3;x=4\)
\(\Rightarrow x=3;x=4\)
7) \(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
8) \(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow x-2\sqrt{x-1}-x=16-x\)
\(\Leftrightarrow-2\sqrt{x-1}=16-x\)
\(\Leftrightarrow\left(-2\sqrt{x-1}\right)^2=\left(16-x\right)^2\)
\(\Leftrightarrow4x-4=256-32x+x^2\)
\(\Leftrightarrow x=26;x=10\)
\(\Rightarrow x=26;x=10\)
9) \(\sqrt{5-x^2}=x-1\)
\(\Leftrightarrow\left(\sqrt{5-x^2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5-x^2=x^2-2x+1\)
\(\Leftrightarrow x=2;x=-1\)
\(\Rightarrow x=2;x=-1\)
10) \(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2-x\)
\(\Leftrightarrow-\sqrt{4x-3}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Leftrightarrow x=7;x=1\)
\(\Rightarrow x=1;x=7\)
Mk ko chắc
\(\sqrt{4x^2-4x+1}=x-16\)
⇔\(\sqrt{\left(2x-1\right)^2}=x-16\)
⇔\(\left|2x-1\right|\) = \(x-16\)
⇔\(\left[{}\begin{matrix}2x-1=x-16\\2x-1=16-x\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}2x-x=-16+1\\2x+x=16+1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-15\\x=\dfrac{17}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-15;\dfrac{17}{3}\right\}\)
Ta có: \(4x^2-4x+1=\left(2x-1\right)^2\ge0\forall x\)
ĐKXĐ: Với mọi giá trị thực của x.
\(\sqrt{4x^2-4x+1}=x-16\) (1)
\(\Leftrightarrow\) \(\sqrt{\left(2x-1\right)^2}=x-16\)
\(\Leftrightarrow\) \(\left|2x-1\right|=x-16\) (2)
- Nếu \(x\ge\dfrac{1}{2}\), hay \(2x-1\ge0\) thì ta có:
(2) \(\Leftrightarrow\) \(2x-1=x-16\)
\(\Leftrightarrow\) \(x=-15\) (loại vì \(x\ge\dfrac{1}{2}\) )
- Nếu \(x< \dfrac{1}{2}\), hay \(2x-1< 0\) thì ta có:
(2) \(\Leftrightarrow\) \(1-2x=x-16\)
\(\Leftrightarrow\) \(3x=17\)
\(\Leftrightarrow\) \(x=\dfrac{17}{3}\) (loại vì \(x< \dfrac{1}{2}\) )
Vậy phương trình (1) vô nghiệm.