Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)
=> x + 2 = 0 hoặc x + 5 = 0
=> x = -2 hoặc x = - 5
2, x^4 - 5x^2 + 4 = 0
x^4 - 4x^2 - x^2 + 4 = 0
x^2 ( x^2 - 4) - ( x^2 - 4) = 0
( x^2 - 1)( x^2 - 4) = 0
( x - 1 )( x + 1)( x - 2)( x + 2) = 0
=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2
Đúng cho mi8nhf mình giải tiếp cho
a, \(x^4-5x^3+2x^2+10x+2=0\)
\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)
\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)
Vì \(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
a) \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-3;-1;2;3\right\}\)
b) \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x+1\right)\left(x+7\right)=0\)
=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-7;-1;3;4\right\}\)
a, \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;-3\\x=3;2\end{cases}}\)
b, \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4;3\\x=-1;-7\end{cases}}\)
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=5\end{array}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=7\end{array}\right.\)
d) \(x^2-9x+8=0\)
\(\Leftrightarrow x^2-x-8x+8=0\)
\(\Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-8=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=8\end{array}\right.\)
g) \(3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\)
\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{2}{3}\end{array}\right.\)
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
Bài 1:
b: \(x^3-4x^2+7x-6=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
=>x-2=0
hay x=2
c: \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
=>(x+1)(x+2)(2x+1)=0
hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)
d: \(2x^3-9x+2=0\)
\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)
hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
a)\(9x^2+5x+2=0\)
\(\Delta=5^2-4\cdot9\cdot2=-47< 0\)
Vô nghiệm
b)\(5x^2+4x-2=0\)
\(\Delta=4^2-4\cdot5\cdot\left(-2\right)=56\)
\(x_{1,2}=\frac{-4\pm\sqrt{56}}{10}\)
c)\(2x^3+7x^2+7x+2=0\)
\(\Rightarrow2x^3+6x^2+4x+x^2+3x+2=0\)
\(\Rightarrow2x\left(x^2+3x+2\right)+\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2+3x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left(x^2+2x+x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[x\left(x+2\right)+\left(x+2\right)\right]\left(2x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
=>x=-1 hoặc x=-2 hoặc \(x=-\frac{1}{2}\)