Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ hệ phương trình \(\Rightarrow\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)=2\)
Ta có: \(\sqrt{x-2018}-\sqrt{x-2019}\le\sqrt{\left(x-2018\right)-\left(x-2019\right)}=1\) Dấu = xảy ra khi và chỉ khi x = 2019
Tương tự: \(\sqrt{y-2018}-\sqrt{y-2019}\le1\)
Dấu = xảy ra khi và chỉ khi y = 2019
Nên: \(\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)\le2\)
Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)
Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)
\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)
\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)
\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)
\(2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)
Mà \(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ
\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)
Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7
\(\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)
\(\Rightarrow\left(x+1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2019\sqrt{2019}+2018\sqrt{2018}\)
\(\Leftrightarrow x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2018\left(\sqrt{2019}+\sqrt{2018}\right)+\sqrt{2019}\)
\(\Leftrightarrow x+y.\left(\sqrt{2019}-\sqrt{2018}\right)^2=2018+\sqrt{2019}\left(\sqrt{2019}-\sqrt{2018}\right)\)
\(\Leftrightarrow x+y\left(4037-2\sqrt{2019.2018}\right)=4037-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037.y-4037=2y\sqrt{2019.2018}-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037y-4037=\left(2y-1\right).\sqrt{2019.2018}\)(1)
Do \(x;y\) hữu tỉ \(\Rightarrow x+4037y-4037\) và \(2y-1\) đều là số hữu tỉ
Mà \(\sqrt{2019.2018}\) là số vô tỉ
\(\Rightarrow\)đẳng thức (1) xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}2y-1=0\\x+4037y-4037=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{4037}{2}\end{matrix}\right.\)
a, \(P=\left(1-\dfrac{2\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}+x+1}\right)\)(ĐK: \(x\ge0,x\ne-1\))
\(=\left(\dfrac{x-2\sqrt{x}+1}{x+1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)+x+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x+1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x+1}:\left(\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x+1}:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}+1\)
b, ĐK: \(x\ge0,x\ne-1\)
\(x=2019-2\sqrt{2018}=\left(\sqrt{2018}-1\right)^2\)
Thay \(x=\left(\sqrt{2018}-1\right)^2\)(TMĐK) vào P ta có:
\(P=\sqrt{2018}-1+1=\sqrt{2018}\)
Vậy với \(x=2019-2\sqrt{2018}\) thì \(P=\sqrt{2018}\)
\(a,ĐKXĐ:x-1\ge0\Leftrightarrow x\ge1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^3+b^2=2-x+x-1=1\)
Lại có: \(a=1-b\)
Thay vào được
\(\left(1-b\right)^3+b^2=1\)
\(\Leftrightarrow1-3b+3b^2-b^3+b^2-1=0\)
\(\Leftrightarrow-b^3+4b^2-3b=0\)
\(\Leftrightarrow b^3-4b^2+3b=0\)
\(\Leftrightarrow b\left(b^2-4b+3\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b-3\right)=0\)
\(\Leftrightarrow b=0\left(h\right)b=1\left(h\right)b=3\)(T/m ĐK b>0)
*Với b = 0
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\left(TmĐKXĐ\right)\)
*Với b = 1
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
*Với b = 3
\(\Leftrightarrow\sqrt{x-1}=3\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy \(S\in\left\{1;2;10\right\}\)
em chỉ bt bài 2 nha!
\(A=\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)...\left(1-\frac{2}{2020\cdot2021}\right)\)
\(\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}\cdot...\cdot\frac{2020\cdot2021-2}{2020\cdot2021}\left(1\right)\)
Mặt khác:\(2020\cdot2021-2=2020\left(2022-1\right)+2020-2022\)
\(=2020\cdot2022-2022\)
\(=2022\left(2020-1\right)=2019\cdot2022\left(2\right)\)
Từ (1),(2) ta có:
\(A=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot...\cdot\frac{2022\cdot2019}{2020\cdot2021}\)
\(=\frac{\left(4\cdot5\cdot6\cdot...\cdot2022\right)\left(1\cdot2\cdot3\cdot...\cdot2019\right)}{\left(2\cdot3\cdot4\cdot...\cdot2020\right)\left(3\cdot4\cdot5\cdot...\cdot2021\right)}\)
\(=\frac{2021\cdot2022}{2\cdot3}\cdot\frac{1\cdot2}{2020\cdot2021}=\frac{2022}{3\cdot2020}=\frac{2022}{6060}\)