Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) ĐKXĐ:x\(\ne\)-4,-5,-6,-7
\(\Leftrightarrow\)\(\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\dfrac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\dfrac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{\left(x+4\right).\left(x+5\right)}+\dfrac{1}{\left(x+5\right).\left(x+6\right)}+\dfrac{1}{\left(x+6\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{3}{\left(x+4\right).\left(x+7\right)}=\dfrac{3}{54}\)
\(\Leftrightarrow\)(x+4).(x+7)=54
\(\Leftrightarrow\)x2+11x+28=54
\(\Leftrightarrow\)x2+11x-26=0
\(\Leftrightarrow\)x2+13x-2x-26=0
\(\Leftrightarrow\)x.(x+13)-2.(x+13)=0
\(\Leftrightarrow\)(x-2).(x+13)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt trên là S={-13;2}
ĐKXĐ: \(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(pt\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
ĐKXĐ: x khác -4; -5 ; -6 ; -7
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Vậy.........
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)
a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>(x+4)(x+7)=54
=>x^2+11x+28-54=0
=>(x+13)(x-2)=0
=>x=-13 hoặc x=2
b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)
=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)
=>x^2+6x+5=12
=>x^2+6x-7=0
=>(x+7)(x-1)=0
=>x=-7 hoặc x=1
a: \(\Leftrightarrow\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{-x}{2\left(x-3\right)}\)
\(\Leftrightarrow x\left(x-3\right)-4x=-x\left(x+1\right)\)
\(\Leftrightarrow x^2-3x-4x+x^2+x=0\)
\(\Leftrightarrow2x^2-6x=0\)
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
b: \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\text{Δ}=11^2-4\cdot1\cdot\left(-26\right)=121+104=225>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-11-15}{2}=\dfrac{-26}{2}=-13\\x_2=\dfrac{-11+15}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)
b) \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7}{\left(x+4\right)\left(x+7\right)}-\dfrac{x+4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2-2x+13x-26=0\)
\(\Leftrightarrow x\left(x-2\right)+13\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\) x - 2 = 0 hoặc x + 13 = 0
\(\Leftrightarrow\) x = 2 hoặc x = -13
Vậy x = 2 hoặc x = -13.
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) (ĐKXĐ: \(x\notin\left\{-4;-5;-6;-7\right\}\))
<=> \(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}-\dfrac{1}{18}=0\)
<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)
<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)
<=> \(\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}=0\)
=> \(18\left(x+7\right)-18\left(x+4\right)-\left(x+4\right)\left(x+7\right)=0\)
<=> 18x + 18.7 - 18x - 18.4 - x2 - 7x - 4x - 28 = 0
<=> - x2 - 11x + 26 = 0
<=> (x - 2)(x + 13) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\) (nhận)
Vậy S = {-13; 2}
Cân thử nào!
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Rightarrow\dfrac{3}{x^2+11x+28}=\dfrac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow x^2-2x+13x-26=0\)
\(\Rightarrow x\left(x-2\right)+13\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Vậy................
Chúc bạn học tốt!!!
Xét mẫu 1: x2+9x+20=x2+4x+5x+20=x(x+4)+5(x+4)=(x+4)(x+5)
Xét mẫu 2: x2+11x+30=x2+5x+6x+30=x(x+5)+6(x+5)=(x+5)(x+6)
Xét mẫu3:x2+13x+42=x2+6x+7x+42=x(x+6)+7(x+6)=(x+6)(x+7)
Vậy .....=\(\dfrac{1}{\text{(x+4)(x+5)}}+\dfrac{1}{\text{(x+5)(x+6)}}+\dfrac{1}{\text{(x+6)(x+7)}}=\dfrac{1}{18}\)
<=>\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
<=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)=.....
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$