K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LN
0
LN
0
NV
0
N
4
TN
30 tháng 6 2017
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
ĐK:x≥-3/2
Phương trình biến đổi như sau:
x^3 +6x^2+5x+3 - \(\left(2x+5\right)\sqrt{2x+3}\)
<=> x^3+4x^2+5x-3 - \(\left(2x+5\right)\left(x+1\right)-\left(2x+5\right)\sqrt{2x+3}-x-1=0\)
<=> \(\left(x^2-2\right)\left(x+4+\frac{2x+5}{x+1+\sqrt{2x+3}}\right)=0\)
Ta thấy: x \(\ge-\frac{3}{2}\) thì x+4+ \(\frac{2x+5}{x+1+\sqrt{2x+3}}\ge0\)
=> x^ 2 -2 = 0 => x^ 2 = 2 => x= \(\sqrt{2}hoặc-\sqrt{2}\)
thử lại x= \(-\sqrt{2}\) loại
vậy x= \(\sqrt{2}\)