K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

\(pt\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2\left(ab+bc+ca\right)}{abc}\Rightarrow x\left(a+b+c\right)-\left(a+b+c\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=x\\a+b+c=0\end{cases}}\)

Câu 19 , Đăk Lắk Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)                                 GiảiĐặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)             ...
Đọc tiếp

Câu 19 , Đăk Lắk 

Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)

Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)

                                 Giải

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)

Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)

               \(=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ac}{ac+2b}}\)

               \(=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}+\sqrt{\frac{bc}{bc+\left(a+b+c\right)a}}+\sqrt{\frac{ac}{ac+\left(a+b+c\right)b}}\)

              \(=\sqrt{\frac{ab}{ab+ac+bc+c^2}}+\sqrt{\frac{bc}{bc+a^2+ab+ac}}+\sqrt{\frac{ac}{ac+ab+b^2+bc}}\)

             \(=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ac}{\left(a+b\right)\left(b+c\right)}}\)

            \(\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}+\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}+\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\left(Cauchy\right)\)

             \(=\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)

             \(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" tại a = b = c

20, Thanh hóa

Cho a;b;c > 0 thỏa abc = 1

CMR \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{a^4+c^4+ac}\le1\)

                                   Giải

Áp dụng bất đẳng thức Bunhiacopxki có

\(\left(a^2+b^2\right)^2\le\left(1+1\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\(\Rightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)

Khi đó \(\frac{ab}{a^4+b^4+ab}\le\frac{ab}{ab\left(a^2+b^2\right)+ab}=\frac{1}{a^2+b^2+1}\)

Chứng minh tương tự \(\frac{bc}{b^4+c^4+bc}\le\frac{1}{b^2+c^2+1}\)

                                   \(\frac{ac}{a^4+c^4+ac}\le\frac{1}{a^2+c^2+1}\)

Khi đó \(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{a^2+c^2+1}=A\)

Ta sẽ chứng minh A < 1

Thật  vậy

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x^3;y^3;z^3\right)\)

\(\Rightarrow xyz=1\)

Khi đó \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng bđt Cô-si có \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow x^3+y^3\ge\left(x+y\right)xy\)

\(\Rightarrow x^3+y^3+1\ge\left(x+y\right)xy+1=\left(x+y\right)xy+xyz=xy\left(x+y+z\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}=\frac{xyz}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Chứng minh tương tự \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)

                                    \(\frac{1}{x^3+z^3+1}\le\frac{z}{x+y+z}\)

Khi đó \(A\le\frac{x+y+z}{x+y+z}=1\left(đpcm\right)\)

Dấu "=" tại x = y = z = 1

Đang trong quá trình cập nhật những câu tiếp theo , những câu tiếp theo sẽ ở trong phần bình luận

3
21 tháng 6 2019

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

21 tháng 6 2019

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

4 tháng 8 2016

Đặt \(\hept{\begin{cases}\left(b-c\right)\left(1+a\right)^2=m\\\left(c-a\right)\left(1+b\right)^2=n\\\left(a-b\right)\left(1+c\right)^2=p\end{cases}}\)
khi đó pt đã cho có dạng \(\frac{m}{x+a^2}+\frac{n}{x+b^2}+\frac{p}{x+c^2}=0\)
\(\Rightarrow m\left(x+a^2\right)\left(x+b^2\right)+n\left(x+a^2\right)\left(x+c^2\right)+p\left(x+b^2\right)\left(x+c^2\right)=0\)
\(\Rightarrow x^2\left(m+n+p\right)+x\left(m\left(a^2+b^2\right)+p\left(b^2+c^2\right)+n\left(c^2+a^2\right)\right)=0\)
Đến đây biện luận thôi ~~
Tớ làm hơi tắt đấy. 

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.