K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Đặt \(\sqrt{\frac{x+3}{2}}=a+1\)thì ta có hệ

\(\hept{\begin{cases}2x^2+4x=a+1\left(1\right)\\2a^2+4a=x+1\left(2\right)\end{cases}}\)

Lấy (1) - (2) được

\(2\left(x^2-a^2\right)+5\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(2x+2a+5\right)=0\)

Tới đây đơn giản rồi tự làm nốt nhé

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 12 2019

\(DK:x\in\left(-\frac{1}{4};4\right)\)

PT\(\Leftrightarrow\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}+2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}+\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{15}{2}\)

Ta co:

\(\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}\ge^{ }1\left(1\right)\)

\(2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}\ge4\left(2\right)\)

Dau '=' xay ra khi \(x=0\)

Xet

\(\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{5}{2}\left(3\right)\)

\(\Leftrightarrow\frac{-\frac{7}{4}x}{\sqrt{4-x}+2}-\frac{4x}{\sqrt{4x+1}+1}=0\)

\(\Leftrightarrow x\left(\frac{7}{4\sqrt{4-x}+8}+\frac{4}{\sqrt{4x+1}+1}\right)=0\)

\(\Leftrightarrow x=0\left(n\right)\)

Tuc la \(\left(3\right)\)đúng khi \(x=0\) \(\left(4\right)\)

\(\left(1\right),\left(2\right),\left(4\right)\Rightarrow VT\ge\frac{15}{2}=VP\)

Khi \(x=0\)

5 tháng 7 2019

\(ĐK:x\ge\frac{3}{2}\)

Đặt : \(\sqrt{4x^2+9}=a;\sqrt{2x-3}=b\); a lớn hơn  0; b lớn hơn hoặc bằng 0

ta có: \(a^2-b^2=4x^2+9-2x+3=2\left(2x^2-x+6\right)\)

Ta có phương trình:

\(\frac{a^2-b^2}{2x}=a+b\Leftrightarrow\frac{\left(a-b\right)\left(a+b\right)}{2x}=a+b\)

mà a+b lớn hơn 0

phương trình trên <=> \(\frac{a-b}{2x}=1\Leftrightarrow a-b=2x\)( chia hai vế cho a+b)

Khi đó ta có phương trình ẩn x

\(\sqrt{4x^2+9}-\sqrt{2x-3}=2x\)

=> \(4x^2+9+2x-3-2\sqrt{\left(4x^2+9\right)\left(2x-3\right)}=4x^2\)

<=> \(3+x=\sqrt{8x^3-12x^2+18x-27}\)

<=> \(8x^3-13x^2+12x-36=0\)

<=> \(\left(x-2\right)\left(8x^2+3x+18\right)\)=0

<=> x=2  (tmđk)

thử lại vào phương trình ban đầu thấy thỏa mãn

Vậy x=2

7 tháng 1 2019

\(x^4+2x^3=4x+4\)

\(x^4+2x^3+x^2-x^2-4x-4=0\)

\(x^2\left(x^2+2x+1\right)-\left(x^2+4x+4\right)=0\)

\(\left[x\left(x+1\right)\right]^2-\left(x+2\right)^2=0\)

\(\left(x^2+x-x-2\right)\left(x^2+x+2\right)=0\)

\(\left(x^2-2\right)\left(x^2+x+2\right)=0\)

\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+x+2\right)=0\)

tự làm nốt nhé~

7 tháng 1 2019

\(b,\frac{1}{x^2}+\sqrt{x+2}=\frac{1}{x}+\sqrt{2x+1}\)(1)

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x+2\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ge\frac{-1}{2}\end{cases}}\)

\(\left(1\right)\Leftrightarrow1+x^2\sqrt{x+2}=x+x^2\sqrt{2x+1}\)

\(\Leftrightarrow\left(1-x\right)+x^2\frac{1-x}{\sqrt{x+2}+\sqrt{2x+1}}=0\)

\(\Leftrightarrow\left(1-x\right)\left(1+\frac{x^2}{\sqrt{x+2}+\sqrt{2x+1}}\right)=0\)(2)

\(\hept{\begin{cases}x\ne0\\x\ge\frac{-1}{2}\end{cases}}\Rightarrow1+\frac{x^2}{\sqrt{x+2}+\sqrt{2x+1}}>0\)

Nên từ (2) => Phương trình đã cho có nghiệm x = 1 (TMĐKXĐ)

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
21 tháng 1 2020

\(Đkxđ:\hept{\begin{cases}2x-1>0\\4x-3>0\\x>0\end{cases}\Leftrightarrow x>\frac{3}{4}}\)

Phương trình tương đương với: 

\(\left(\frac{x}{\sqrt{2x-1}}-1\right)+\left(\frac{x}{\sqrt[4]{4x-3}}-1\right)=0\)

\(\Leftrightarrow\frac{x-\sqrt{2x-1}}{\sqrt{2x-1}}+\frac{2-\sqrt[4]{4x-3}}{\sqrt[4]{4x-3}}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^2-\sqrt{4x-3}}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^4-4x+3}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x-1\right)^2\left(x^2+2x+3\right)}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x+1\right)^2+2}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}\right]=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy .............................

21 tháng 10 2020

a) đk: \(x\ge-2\)

Ta có: \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\frac{5}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\sqrt{x+2}=\frac{12}{5}\)

\(\Leftrightarrow x+2=\frac{144}{25}\)

\(\Rightarrow x=\frac{94}{25}\) (tm)

b) đk: \(x\ge\frac{3}{2}\)

Ta có: \(\sqrt{x^2-4x+4}=2x-3\)

\(\Leftrightarrow\left|x-2\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-3\\x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{5}{3}\left(tm\right)\end{cases}}\)

21 tháng 10 2020

a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

ĐKXĐ : x ≥ -2

⇔ \(\sqrt{x+2}-\sqrt{2^2\left(x+2\right)}+\frac{3}{4}\sqrt{3^2\left(x+2\right)}=3\)

⇔ \(\sqrt{x+2}-2\sqrt{x+2}+\frac{3}{4}\cdot3\sqrt{x+2}=3\)

⇔ \(-\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

⇔ \(\frac{5}{4}\sqrt{x+2}=3\)

⇔ \(\sqrt{x+2}=\frac{12}{5}\)

⇔ \(x+2=\frac{144}{25}\)

⇔ \(x=\frac{94}{25}\left(tmđk\right)\)

b) \(\sqrt{x^2-4x+4}=2x-3\)

⇔ \(\sqrt{\left(x-2\right)^2}=2x-3\)

⇔ \(\left|x-2\right|=2x-3\)(1)

Với x < 2

(1) ⇔ -( x - 2 ) = 2x - 3

     ⇔ 2 - x = 2x - 3

     ⇔ -x - 2x = -3 - 2

     ⇔ -3x = -5

     ⇔ x = 5/3 ( tm )

Với x ≥ 2

(1) ⇔ x - 2 = 2x - 3

     ⇔ x - 2x = -3 + 2

     ⇔ -x = -1

     ⇔ x = 1 ( ktm )

Vậy x = 5/3

16 tháng 8 2020

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

16 tháng 8 2020

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>