Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
voi x=0 ta thay 0 o phai la no pt
voi x<>0 chia ca 2 ve cho x^2 ta dc
x^2-3x+6-3/x+1/x^2=0
(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2
=>a^2-3a+4=0=>pt vo no :(
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15-x^2+1+8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow2x-4=0\)
<=> 2x=4
<=> x=2 (tmđk)
Vậy x=2
b) \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{5}{x+2}-\frac{12}{\left(x-2\right)\left(x+2\right)}-1=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{12}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-4}{x^2-4}=0\)
\(\Leftrightarrow\frac{x^2+3x+2-5x+10-12-x^2+4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x+2}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x+2=0
<=> -2x=-2
<=> x=1 (tmđk)
Vậy x=1
a)<=>
A,=(x+y)(x-y)=x^2-y^2
x=(-1/2)^5:(1/2)^4=-1/2
x^2=1/4
y=8^2/(-2)^5=-2
y^2=4
A=1/4-4=-15/4
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(ĐKXĐ:\)\(x\ne1\)và \(x\ne3\)
\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)9x-3}=\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{8}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow\)\(x^2-3x+5x-15=x^2-x+x-1-8\)
\(\Leftrightarrow\)\(x^2-3x+5x-15-x^2+x-x+1+8=0\)
\(\Leftrightarrow\)\(2x-6=0\)
\(\Leftrightarrow\)\(2x=6\)
\(\Leftrightarrow\)\(x=3\)( loại )
Vậy \(S=\varnothing\)
b) \(\frac{y+1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
\(ĐKXĐ:\)\(y\ne2\)và \(y\ne-2\)
\(\frac{\left(y+1\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12}{\left(y-2\right)\left(y+2\right)}+\frac{\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10-10-12-y^2+4=0\)
\(\Leftrightarrow\)\(-2y+4=0\)
\(\Leftrightarrow\)\(-2y=-4\)
\(\Leftrightarrow\)\(y=2\)( loại 0
Vậy \(S=\varnothing\)
phần a dấu = thứ nhất how to hiểu ?