Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6ax2+4ax-9x-6 = 0
<=> ( 6ax2+4ax ) - ( 9x+6 ) = 0
<=> 2ax(3x+2) - 3(3x+2) = 0
<=> ( 2ax-3 )( 3x+2 ) = 0
<=> \(\left[{}\begin{matrix}2ax-3=0\\3x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2ax=3\\3x=-2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2a}\\x=\frac{-2}{3}\end{matrix}\right.\)
ax(4x2 - 1) - 3(4x2 - 1) = 0
(4x2 - 1) (ax - 3) = 0
4x2 - 1 = 0 => x = + - 1/2
ax - 3 = 0 => a = 3/x
\(x^2+7x-a^2+a+12=0\)
\(\Leftrightarrow x^2-ax+4x+ax+3x-a^2+a+12=0\)
\(\Leftrightarrow\left(x^2-ax+4x\right)+\left(ax+3x\right)-\left(a^2+3a\right)+\left(4a+12\right)=0\)
\(\Leftrightarrow x\left(x-a+4\right)+x\left(a+3\right)-a\left(a+3\right)+4\left(a+3\right)=0\)
\(\Leftrightarrow x\left(x-a+4\right)+\left(a+3\right)\left(x-a+4\right)=0\)
\(\Leftrightarrow\left(x+a+3\right)\left(x-a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+a+3=0\\x-a+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-a-3\\x=a-4\end{cases}}}\)
Vậy \(x=-a-3\) hoặc \(x=a-4\)
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
2x^4-9x^3+14x^2-9x+2=0
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1
nên phân tích đc nhân tử là (x-1)
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0
<=> x=1 và 2x^3-7x^2+7x-2=0
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1)
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0
<=> x=1 và 2x^2-5x+2=0
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0
<=> (x-5/4)^2 - 9/16 = 0
<=> (x-5/4)^2 - (3/4)^2 = 0
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
Ta co:6ax^2+4ax—9x—6=0
«=»2ax(3x+2)—3(3x+2)=0
«=»(3x+2)(2ax—3)=0
các bục sau tu giai
ta có : 6ax2+4ax-9x-6=0
\(\Leftrightarrow\)2ax(3x+2)-3(3x+2)=0
\(\Leftrightarrow\)(3x+2)(2ax-3)=0
xét 3x+2=0\(\Rightarrow\)x=\(\frac{-2}{3}\)
thay x vừa tìm được vào ta tính được a=\(\frac{-13}{3}\)