Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-10x^3-15x^2+20x+4=0\)
\(\Leftrightarrow x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-9x^2-24x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-11x^2-22x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-11x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-11x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-11x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(x2 - 11x - 2 không có nghiệm hữu tỉ)
Vậy x = 1 hoặc x = -2.
Bạn ơi hướng dẫn mình cách tách hạng tử được ko?
Cách nào dễ hỉu dễ tách á. bạn có bí kíp k?
Cân lun!
\(x^4-10x^3-15x^2+20x+4\)
\(=x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4\)
\(=x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-9x^2-24x-4\right)\)
\(=\left(x-1\right)\left(x^3+2x^2-11x^2-22x-2x-4\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)-11x\left(x+2\right)-2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2-11x-2\right)\)
Chúc bạn học tốt!!!
x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0
⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0
⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0
⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0
⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0
⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0
⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2
với x=0 pt vô nghiệm
pt tương đương
(x+4)(x+6)(x+8)(x+12)=15x2
<=>[(x+4)(x+12)][(x+6)(x+8)]=15x2
<=>(x2+16x+48)(x2+14x+48)=15x2
chia 2 vế cho x2 ta được:
\(\left(x+16+\frac{48}{x}\right)\left(x+14+\frac{48}{x}\right)=15\)
Đặt t=x+48/x pt trở thành:
(t+16)(t+14)=15
<=>t2+30t+209=0
<=>t=-11 hoặc t=-19
với t=-11 không có giá trị x
với t=-19 =>x=-3 hoặc x=-16
a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)
a) x4 - 10x3 - 15x2 + 20x + 4
= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4
= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)
= (x + 2)(x3 - 12x2 + 9x + 2)
b)
2x4 - 5x3 - 27x2 + 25x + 50
= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)
= (x - 2)(2x3 - x2 - 25x - 25)
c)\(3x^4+6x^3-33x^2-24x+48\)
\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)
\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)
\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)
\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)
\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)
\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)
\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)
ta có : \(x^4-10x^3-15x^2+20x+4=0\) (*)
\(\Leftrightarrow x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3-9x^2-24x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3-11x^2-2x+2x^2-22x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x^2-11x-2\right)+2\left(x^2-11x-2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-11x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x^2-11x-2=0\left(xétsau\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
ta có : \(x^2-11x-2=0\) (1)
\(\Delta=11^2-4.1.\left(-2\right)=121+8=129>0\)
\(\Rightarrow\) phương trình (1) có 2 nghiệm phân biệt
\(x_1=\dfrac{11+\sqrt{129}}{2}\) ; \(x_2=\dfrac{11-\sqrt{129}}{2}\)
vậy phương trình (*) có 4 nghiệm phân biệt \(x=1;x=-2;x=\dfrac{11+\sqrt{129}}{2};x=\dfrac{11-\sqrt{129}}{2}\)