K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 11 2019

\(\Leftrightarrow1-\frac{6}{x^2+2}+1-\frac{12}{x^2+8}+1-\frac{7}{x^2+3}=0\)

\(\Leftrightarrow\frac{x^4-4}{x^2+2}+\frac{x^2-4}{x^2+8}+\frac{x^2-4}{x^2+3}=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+2}\right)=0\)

\(\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)

19 tháng 11 2019

@Nguyễn Việt Lâm

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

6 tháng 4 2018

Thực ra cũng EZ thôi :

\(\frac{6}{x^2-9}-1+\frac{4}{x^2-11}-1-\frac{7}{x^2-8}+1-\frac{3}{x^2-12}+1=0=>\)

\(\frac{15-x^2}{x^2-9}+\frac{15-x^2}{x^2-11}-\frac{15-x^2}{x^2-8}-\frac{15-x^2}{x^2-12}=0\)

=> \(\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}-\frac{1}{x^2-8}-\frac{1}{x^2-12}\right)=0\)

=>\(15-x^2=0=>x=\pm\sqrt{15}\)

Hình như còn nghiệm , any body help me ?

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

15 tháng 9 2017

a) ĐK: \(\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

Đặt \(\frac{3}{x-3}=a;\frac{2}{x-1}=b\Rightarrow pt\Leftrightarrow a-b=\frac{1}{b}-\frac{1}{a}\)

\(\Leftrightarrow a-b=\frac{a-b}{ab}\Leftrightarrow\left(a-b\right)\left(1-\frac{1}{ab}\right)=0\)

TH1: \(a-b=0\Leftrightarrow\frac{3}{x-3}=\frac{2}{x-1}\Leftrightarrow3\left(x-1\right)-2\left(x-3\right)=0\Leftrightarrow x=-3\left(tm\right)\)

TH2: \(1-\frac{1}{ab}=0\Leftrightarrow\frac{3}{x-3}.\frac{2}{x-1}=1\Leftrightarrow x^2-4x+3=6\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\left(tm\right)\)

b) ĐK: \(x\ge2\)

Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)

Phương trình trở thành \(\left(t^2+2\right)^2-5\left(t^2+2\right)+8=2t\)

\(\Leftrightarrow t^4+4t^2+4-5t^2-10-2t+8=0\)

\(\Leftrightarrow t^4-t^2-2t+2=0\Leftrightarrow t^2\left(t^2-1\right)-2\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t^2\left(t+1\right)-2\right]=0\Leftrightarrow\left(t-1\right)\left(t^3+t^2-2\right)=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+2\right)=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\left(tm\right)\)

30 tháng 5 2016

Ta giải như sau:

\(pt\Leftrightarrow\frac{4\left(x^2+6\right)-8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

\(\Leftrightarrow4-\frac{8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

\(\Leftrightarrow\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}+\frac{8}{x^2+6}=4\)

Tới đay ta nhận thấy sự tương tự giữa tử và mẫu của các phân thức bên trái.

\(pt\Leftrightarrow\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)+\left(\frac{8}{x^2+6}-1\right)=0\)

\(\Leftrightarrow\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}+\frac{2-x^2}{x^2+6}=0\)

\(\Leftrightarrow\left(2-x^2\right)\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)=0\)

Do \(\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)\ne0\forall x\) nên pt tương đương \(2-x^2=0\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)

Chúc em học tốt :)

29 tháng 5 2016

Bài toán được giải trên tập số phức

x=-căn bậc hai(2), x=căn bậc hai(2); x = -căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));

22 tháng 4 2020

Bài 1 : 

Ta có  : 

\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)

\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)

\(+\left(\frac{x+2013}{2011}+1\right)\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)

\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+4024=0\)

\(\Rightarrow x=-4024\)

22 tháng 4 2020

Bài 2 : 

Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)

=> Phương trình trở thành 

\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)

\(\Rightarrow5a^2+3a-8=0\)

\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)

Vì \(a\ge0\Rightarrow a=1\)

\(\Rightarrow x^2+2x+1=1\)

\(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2,0\right\}\)