Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\Leftrightarrow\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+...+\dfrac{x-2012}{1}-1=0\)
\(\Leftrightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+...+\dfrac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}\right)=0\)
Dễ thấy: \(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}>0\)
\(\Rightarrow x-2013=0\Rightarrow x=2013\)
Sao lại trừ 1 vậy bạn ??? mình không hiểu cho lắm mong bạn giúp đỡ
Lời giải:
Ta có:
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)
Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)
\(\Leftrightarrow x=2013\)
Vậy PT có nghiệm \(x=2013\)
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}+\dfrac{x+3}{2010}=\dfrac{x-1}{2014}+\dfrac{x-2}{2015}+\dfrac{x-3}{2016}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2012}+1\right)+\left(\dfrac{x+2}{2011}+1\right)+\left(\dfrac{x+3}{2010}\right)=\left(\dfrac{x-1}{2014}+1\right)+\left(\dfrac{x-2}{2015}+1\right)+\left(\dfrac{x-3}{2016}+1\right)\)
\(\Leftrightarrow\dfrac{x+2013}{2012}+\dfrac{x+2013}{2011}+\dfrac{x+2013}{2010}-\dfrac{x+2013}{2014}-\dfrac{x+2013}{2015}-\dfrac{x+2013}{2016}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow\dfrac{2-x-2010}{2010}=\dfrac{2012-2012x-2011x}{2011\cdot2012}\\ \Leftrightarrow\dfrac{-2008-x}{2010}=\dfrac{2012-4023x}{4046132}\\ \Leftrightarrow\left(-2008-x\right)4046132=\left(2012-4023x\right)2010\\ \Leftrightarrow-8124633056-4046132x=4044120-8086230x\\ \Leftrightarrow-4046132x+8086230x=4044120+8124633056\\ \Leftrightarrow4040098x=8128677176\\ \Leftrightarrow x=2012\)
\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow2023066\left(2-x\right)-4066362660=2022060\left(1-x\right)-2021055x\\ \Leftrightarrow4046132-2023066x-4066362660=2022060-2022060x-2021055x\\ \Leftrightarrow-4062316528-2023066x=2022060-4043115x\\ \Leftrightarrow-2023066x+4043115x=2022060+4062316528\\ \Leftrightarrow2020049x=4064338588\\ \Leftrightarrow x=2012\)
Bài của bạn nè bạn gái!
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
mà \(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)
\(\Rightarrow x-2014=0\Rightarrow x=2014\)
vậy x=2014
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Vậy PT có nghiệm là \(x=2014\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
<=>\(\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+\dfrac{x-3}{2010}-1+...+\dfrac{x-2012}{1}-1=0\)
<=>\(\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+1\right)=0\)
do 1/2012+1/2011....+1 khác 0 =>x-2013=0<=>x=2013
vậy..........................
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\left(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}\right)-2012=0\)
\(\Rightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
\(\Rightarrow x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)
Vì \(x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)nên x - 2013 hoặc \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\) = 0. Nhưng \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\ne0\) nên x - 2013 = 0. Vì vậy x = 2013.
Vậy...