K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

a) x3 + 4x2 - 29x + 24 = 0

<=> x3 - x2 + 5x2 - 5x - 24x + 24 = 0

<=> x2(x - 1) + 5x(x - 1) - 24(x - 1) = 0

<=> (x - 1)(x2 + 5x - 24) = 0

\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x^2+5x-24=0\end{matrix}\right.\)

+) x - 1 = 0 <=> x = 1

+) x2 + 5x - 24 = 0

\(\Delta=5^2+4.1.24=121\Rightarrow\sqrt{\Delta}=11\)

Phương trình có 2 nghiệm phân biệt: \(x_1=\frac{-5+11}{2}=3;x_2=\frac{-5-11}{2}=-8\)

Vậy ...

23 tháng 1 2017

a. pt <=> x3+5x2-24x-x2-5x+24 =0

<=> x(x2+5x-24)-(x2+5x-24)=0

<=> (x-1)(x2+5x-24)=0

<=> \(\left[\begin{matrix}x=1\\x=3\\x=-8\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-18\right)=-36\)

\(\Leftrightarrow\left(x^2+3x\right)^2-16\left(x^2+3x\right)=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x-16\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{-3+\sqrt{73}}{2};\dfrac{-3-\sqrt{73}}{2}\right\}\)

c: \(\Leftrightarrow6x^4-18x^3-17x^3+51x^2+11x^2-33x-2x+6=0\)

\(\Rightarrow\left(x-3\right)\left(6x^3-17x^2+11x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3-12x^2-5x^2+10x+x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{3;2;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

d: \(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2+3x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)

19 tháng 7 2018

câu b nè : http://123link.pw/fGAhMX

NV
13 tháng 3 2020

a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)

b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)

NV
13 tháng 3 2020

d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)

Đặt \(\left|2x-5\right|=t\ge0\)

\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 4:

$3x^4+10x^3-3x^2-10x+3=0$

Ta đi phân tích $3x^4+10x^3-3x^2-10x+3$ thành nhân tử

Đặt $3x^4+10x^3-3x^2-10x+3=(x^2+ax+b)(3x^2+cx+d)$ với $a,b,c,d$ là các số nguyên

$\Leftrightarrow 3x^4+10x^3-3x^2-10x+3=3x^4+x^3(c+3a)+x^2(d+ac+3b)+x(ad+bc)+bd$

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} c+3a=10\\ d+ac+3b=-3\\ ad+bc=-10\\ bd=3\end{matrix}\right.\). Từ $bd=3$. Giả sử $b=-1$

$\Rightarrow d=-3$. Thay vào hệ có được $ac=3; c+3a=10\Rightarrow a=3; c=1$

Vậy $3x^4+10x^3-3x^2-10x+3=(x^2+3x-1)(3x^2+x-3)$

$\Leftrightarrow (x^2+3x-1)(3x^2+x-3)=0$

\(\Rightarrow \left[\begin{matrix} x^2+3x-1=0\\ 3x^2+x-3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3\pm \sqrt{13}}{2}\\ x=\frac{-1\pm \sqrt{37}}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 3:

$x^4+4x^3+x^2-4x+1=0$

$\Leftrightarrow (x^4+4x^3+4x^2)-3x^2-4x+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)-x^2+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)+1-x^2=0$

$\Leftrightarrow (x^2+2x-1)^2-x^2=0$

$\Leftrightarrow (x^2+x-1)(x^2+3x-1)=0$

\(\Rightarrow \left[\begin{matrix} x^2+x-1=0\\ x^2+3x-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{5}}{2}\\ x=\frac{-3\pm \sqrt{!3}}{2}\end{matrix}\right.\)

Vậy.......

5 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+3x2+x2+3x-2x-6=0

<=> x2(x+3)+x(x+3)-2(x+3)=0

<=> (x+3)(x2+x-2)=0

<=> \(\left[\begin{matrix}x+3=0\\x^2+x-2=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-3\\\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=-3\\x=1\\x=-2\end{matrix}\right.\)

Vậy ...

b) x3-3x2+4=0

<=> x3-2x2-x2+4=0

<=> x2(x-2)-(x-2)(x+2)=0

<=> (x-2)(x2-x-2)=0

<=> \(\left[\begin{matrix}x-2=0\\x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy ...

5 tháng 2 2017

c) x4+2x3+2x2-2x-3=0

<=> x4+x3+x3+x2+x2+x-3x-3=0

<=> x3(x+1)+x2(x+1)+x(x+1)-3(x+1)=0

<=> (x+1)(x3+x2+x-3)=0

<=> (x+1)(x3-x2+2x2-2x+3x-3)=0

<=> (x+1)[x2(x-1)+2x(x-1)+3(x-1)]=0

<=> (x+1)(x-1)(x2+2x+3)=0

Mà x2+2x+3=x2+2x+1+2=(x+1)2+2>0

<=> (x+1)(x-1)=0

<=>\(\left[\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy ...

5 tháng 4 2020

a, Ta có : \(x^3-5x^2+8x-4=0\)

=> \(x^3-x^2-4x^2+4x+4x-4=0\)

=> \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=> \(\left(x-1\right)\left(x-2\right)^2=0\)

=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b, Ta có : \(x^4-4x^2+12x-9=0\)

=> \(x^4-x^3+x^3-x^2-3x^2+3x+9x-9=0\)

=> \(x^3\left(x-1\right)+x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^3+3x^2-2x^2-6x+3x+9\right)=0\)

=> \(\left(x-1\right)\left(x^2\left(x+3\right)-2x\left(x+3\right)+3\left(x+3\right)\right)=0\)

=> \(\left(x-1\right)\left(x+3\right)\left(x^2-2x+3\right)=0\)

\(x^2-2x+3=\left(x-1\right)^2+2>0\)

=> \(\left(x-1\right)\left(x+3\right)=0\)

=> \(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c, Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

=> \(\left(x^2+x+4x+4\right)\left(x^2+2x+3x+6\right)-24=0\)

Đặt \(x^2+5x=a\) ta được phương trình :\(\left(a+4\right)\left(a+6\right)-24=0\)

=> \(a^2+4a+6a+24-24=0\)

=> \(a\left(a+10\right)=0\)

=> \(\left[{}\begin{matrix}a=0\\a+10=0\end{matrix}\right.\)

- Thay lại \(x^2+5x=a\) vào phương tình ta được :\(\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

( tự kết luận dùm mình nha )

NV
5 tháng 4 2020

a/ \(x^3-4x^2+4x-x^2+4x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b/ \(\Leftrightarrow x^4+2x^3-3x^2-2x^3-4x^2+6x+3x^2+6x-9=0\)

\(\Leftrightarrow x^2\left(x^2+2x-3\right)-2x\left(x^2+2x-3\right)+3\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-2x+3\right)=0\)

\(\Leftrightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+4=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+4=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)