K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 7 2017
a đề sai hay sao mà vô nghiệm ?
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)
\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)
\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)
Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)
\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)
Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)
\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)
Suy ra x=4
ko hiểu chỗ nào ib nhé
1 tháng 4 2019
lời giải của bạn trên có 1 xíu sai nhé
Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5>=0\\4-2x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x>=-5\\2x< =4\end{matrix}\right.\Leftrightarrow-\dfrac{5}{2}< =x< =2\)
\(x^2+\sqrt{2x+5}+\sqrt{4-2x}=4x-1\)
=>\(x^2-4+\sqrt{2x+5}-3+\sqrt{4-2x}=4x-1-7\)
=>\(\left(x-2\right)\left(x+2\right)+\dfrac{2x+5-9}{\sqrt{2x+5}+3}+\sqrt{4-2x}=4x-8\)
=>\(\left(x-2\right)\left[\left(x+2\right)+\dfrac{2}{\sqrt{2x+5}+3}-4\right]+\sqrt{4-2x}=0\)
=>\(-\left(2-x\right)\left[\left(x-2\right)+\dfrac{2}{\sqrt{2x+5}+3}\right]+\sqrt{2\left(2-x\right)}=0\)
=>\(\sqrt{2-x}\left[-\sqrt{2-x}\left(x-2+\dfrac{2}{\sqrt{2x+5}+3}\right)+\sqrt{2}\right]=0\)
=>\(\sqrt{2-x}=0\)
=>x=2(nhận)