K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)

=> Phương trình đã cho là phương trình vô nghiệm

28 tháng 2 2018

thôi cho sửa lại ...

\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)

Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}

11 tháng 9 2015

Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)

\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)

17 tháng 7 2017

đặt t = 2x-1 ta được

x4-4x2t-12t2=0

x4-6x2t+2x2t-12t2=0

x2(x2-6t)+2t(x2-6t)=0

(x2-6t)(x2+2t)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6t=0\\x^2+2t=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2=6t\\x^2=-2t\end{cases}}\)

TH1 x2=6t \(\Leftrightarrow\)x2=6(2x-1) giải pt được x=6+\(\sqrt{30}\)hoặc x=6-\(\sqrt{30}\)

TH2 x2=-2t\(\Leftrightarrow\)x2=-2(2x-1) giải pt ta được x=-2+\(\sqrt{6}\)hoặc x=-2-\(\sqrt{6}\)

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)

b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)

13 tháng 3 2018

Ai đó giải cụ thể hơn đc không

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

12 tháng 7 2019

#)Sửa đề : x4+2x3+5x2+4x-12=0

#)Giải :

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Giải phương trình:

x4+2x3+5x2+4x+4=0

_Sửa đề bài :

Giải phương trình,x^4 + 2x^3 + 5x^2 + 4x - 12 = 0,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

13 tháng 4 2017

Câu c;d giải \(\Delta\)

Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự

a/ \(x^4-2x^2-8=0\left(1\right)\)

Đặt: \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow t^2-2t-8=0\)

( a = 1; b = -2; c = -8 )

\(\Delta=b^2-4ac\) 

   \(=\left(-2\right)^2-4.1.\left(-8\right)\)

   \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)

\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)

Vậy: S = {-2;2}

4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5



4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5

Nhớ like nha

please