Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x | \(\frac{5}{2}\) | 4 | |||
2x-5 | - | 0 | + | | | + |
x-4 | - | | | - | 0 | + |
+) Nếu \(x\le\frac{5}{2}\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\left|x-4\right|=4-x\)
\(pt\Leftrightarrow5-2x-4+x=4x\)
\(\Leftrightarrow-5x=-1\)
\(\Leftrightarrow x=\frac{1}{5}\left(tm\right)\)
+) Nếu \(\frac{5}{2}< x\le4\Leftrightarrow\left|2x-5\right|=2x-5\)
\(\left|x-4\right|=4-x\)
\(pt\Leftrightarrow2x-5-4+x=4x\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\) (loại)
+) Nếu \(x>4\Leftrightarrow\left|2x-5\right|=2x-5\)
\(\left|x-4\right|=x-4\)
\(pt\Leftrightarrow2x-5-x+4=4x\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\frac{1}{3}\)( loại )
Vậy ...
( p/s : câu b tương tự )
1) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
2) \(9x^2-1=3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{2}{3}\end{cases}}\)
`5-(x-6)=4(3-2x)`
`<=>5-x+6-4(3-2x)=0`
`<=> 5-x+6-12 +8x=0`
`<=> 7x -1=0`
`<=> 7x=1`
`<=>x=1/7`
Vậy pt đã cho có nghiệm `x=1/7`
__
`3-x(1-3x) =5(1-2x)`
`<=> 3-x+3x^2=5-10x`
`<=> 3-x+3x^2-5+10x=0`
`<=> 3x^2 +9x-2=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{105}}{6}\\x=\dfrac{-9-\sqrt{105}}{6}\end{matrix}\right.\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\dfrac{-9+\sqrt{105}}{6};\dfrac{-9-\sqrt{106}}{5}\right\}\)
__
`(x-3)(x+4) -2(3x-2)=(x-4)^2`
`<=>x^2+4x-3x-12- 6x +4 =x^2 -8x+16`
`<=>x^2-5x-8=x^2-8x+16`
`<=> x^2 -5x-8-x^2+8x-16=0`
`<=> 3x-24=0`
`<=>3x=24`
`<=>x=8`
Vậy pt đã cho có nghiệm `x=8`
a) 5-(x-6)=4(3-2x)
=> 5 – x + 6 = 12 – 8x
=> -x + 8x = 12 – 5 – 6
=> 7x = 1
=> x=1/7
Vậy phương trình có nghiệm x=1/7
b) 3 - x ( 1 - 3x)=5(1-2x)
=> 3-x+3x^2=5-10x
=> 3x^2+9x-2= 0
0=105
=> x =\(\dfrac{-9-\sqrt{105}}{6}\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2
(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)
Vậy tập nghiệm của pt là: S = {-1; 1}
b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0
Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x
⇔ x = -5 hoặc x = 5/3
Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}
c) x – 2)2 + 2(x – 1) ≤ x2 + 4
⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4
⇔ -2x ≤ 2
⇔ x ≥ -1
Tập nghiệm S = {x | x ≥ -1}
2x - ( 3 - 5x ) = 4( x + 3 )
<=> 2x - 3 + 5x = 4x + 12
<=> 7x - 4x = 12 + 3
<=> 3x = 15
<=> x = 5
Vậy phương trình có nghiệm x = 5
5( x - 3 ) - 4 = 2( x - 1 ) + 7
<=> 5x - 15 - 4 = 2x - 2 + 7
<=> 5x - 2x = 5 + 19
<=> 3x = 24
<=> x = 8
Vậy phương trình có nghiệm x = 8
ta có
\(2x-\left(3-5x\right)=4\left(x+3\right)\Leftrightarrow2x-3+5x=4x+12\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
câu b.
\(5\left(x-3\right)-4=2\left(x-1\right)+7\Leftrightarrow5x-15-4=2x-2+7\)
\(\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)
Đặt \(\hept{\begin{cases}x+5=a\\x-4=b\end{cases}\Rightarrow2x+1=a+b}\)
\(\left(x+5\right)^4+\left(x-4\right)^4=\left(2x+1\right)^4\)
\(\Rightarrow a^4+b^4=\left(a+b\right)^4\)
\(\Rightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\Rightarrow4a^3b+6a^2b^2+4ab^3=0\)
\(\Rightarrow4ab\left[a^2+\frac{3}{2}ab+b^2\right]=0\)(1)
Mà \(a^2+\frac{3}{2}ab+b^2=\left(a+\frac{3}{4}b\right)^2+\frac{7}{16}b^2>0\)(2)
(vì nếu a và b đồng thời bằng 0 thì x + 5 và x - 4 đồng thời = 0 điều đó vô lý)
Từ (1) và (2), ta được
\(\orbr{\begin{cases}a=0\\b=0\end{cases}\Rightarrow}\orbr{\begin{cases}x+5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}}\)
Chúc bạn học tốt.