Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(\frac{2}{x^2-2015x+2014}=\frac{1}{x^2-2016x+2015}\)
\(\Leftrightarrow\frac{2}{\left(x-1\right)\left(x-2014\right)}=\frac{1}{\left(x-1\right)\left(x-2015\right)}\)
\(\Leftrightarrow\frac{2}{x-2014}=\frac{1}{x-2015}\)
áp dụng tính chất tỉ lệ thức ta có:
\(\frac{2}{x-2014-2}=\frac{1}{x-2015-1}\)
\(\Leftrightarrow\frac{2}{x-2016}-\frac{1}{x-2016}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2016=0\)
\(\Leftrightarrow x=2016\)
Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1
=> vế trái có nhân tử (x - 1)
pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015) = 0
<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0
<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0
<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0
<=> x - 1 = 0 hoặc x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015 = 0
+) x - 1 = 0 <=> x = 1
+) x + 1 = 0 <=> x = -1
+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0
<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\) - 2015 = 0
<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)
<=> \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)
<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)
Vậy pt có 4 nghiệm...
chính xác nè bạn nhớ sai ruj:
x4+2015x2+2014x+2015=0
<=>x4-x+2015x2+2015x+2015=0
<=>x(x3-1)+2015(x2+x+1)=0
<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0
<=>(x2+x+1)[x(x-1)-2015]=0
<=>(x2+x+1)(x2-x-2015)=0
<=>x2+x+1=0 hoặc x2-x-2015=0
*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0
<=>(x+1/2)2+3/4=0(vô lí)
*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)
<=>(x-1/2)2-8061/4=0
<=>(x-1/2)2 =8061/4
<=>x-1/2 =\(\sqrt{\frac{8061}{4}}\)
<=>x =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)
Theo bài ra , ta có :
\(\left(x-6\right)^4+\left(x-8\right)^4=16\)
\(\Leftrightarrow\left(x-6\right)^4+\left(x-8\right)^4=2^4\)
\(\Leftrightarrow\left(x-6\right)^2+\left(x-8\right)^2=2^2\)
\(\Leftrightarrow x^2-12x+36+x^2-16x+64=4\)
\(\Leftrightarrow2x^2-28x+96=0\)
\(\Leftrightarrow2x^2-16x-12x+96=0\)
\(\Leftrightarrow2x\left(x-8\right)-12\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(2x-12\right)=0\)
\(\Leftrightarrow2\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-8=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6,8\right\}\)
Chúc bạn học tốt =))
Áp dụng tính chất giao hoán, phân phối của phép công
cố + quá= cố+ quá
quá+ cố =quá + cố
=> 2 (cố quá) =2 (quá cố)
Đặt x-2014 = a ; x+2015 = b
=> 2x+1 = a+b
pt trở thành : a^4+b^4 = (a+b)^4
Đến đó bạn khai triển rùi trừ qua mà làm nha !
Đặt x+7=tx+7=t , khi đó:
(t−1)4+(t+1)4=272(t-1)4+(t+1)4=272
⇔(t2−2t+1)2+(t2+2t+1)2=272⇔(t2-2t+1)2+(t2+2t+1)2=272
⇔(t2+1)2−4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272⇔(t2+1)2-4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272
⇔2(t2+1)2+8t2=272⇔2(t2+1)2+8t2=272
⇔t4+2t2+1+4t2=136⇔t4+2t2+1+4t2=136
⇔t4+6t2−135=0⇔t4+6t2-135=0
⇔t4−9t2+15t2−135=0⇔t4-9t2+15t2-135=0
⇔t2(t2−9)+15(t2−9)=0⇔t2(t2-9)+15(t2-9)=0
⇔(t2−9)(t2+15)=0⇔(t2-9)(t2+15)=0
Vì t2+15 ≥15∀tt2+15 ≥15∀t
⇔t=±3⇔t=±3
* Với t=3t=3 , ta có: x+7=3x+7=3 ⇔x=−4⇔x=-4
* Với t=−3t=-3 , ta có: x+7=−3x+7=-3 ⇔x=−10⇔x=-10
S= { −4;−10-4;-10 }
\(\Leftrightarrow\left(x-7+1\right)^4+\left(x-7-1\right)^4=272\)
Đặt x-7 = t, ta có :
\(\left(t+1\right)^4+\left(t-1\right)^4=272\)
\(\Leftrightarrow t^4+4t^4+6t^2+4t+1+t^4-4t^3+6t^2-4t+1-272=0\)
\(\Leftrightarrow2t^4+12t^2-270=0\)
\(\Leftrightarrow t^4+6t^2-135=0\)
\(\Leftrightarrow\left(t^2+15\right)\left(t^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t^2+15=0\\t^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t^2=-15\left(loai\right)\\t=\pm3\end{cases}}}\)
\(\cdot t=3\Leftrightarrow x-7=3\Leftrightarrow x=10\)
\(\cdot t=-3\Leftrightarrow x-7=-3\Leftrightarrow x=4\)
Vậy phương trình có tập nghiệm \(S=\left\{10;4\right\}\)
Chúc bạn học tốt nha ~~