K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

a, Thay m=1 vào phương trình, ta được: x2-3x+2=0

<=> x2-2x-x+2=0

<=> x(x-2) - (x-2)=0

<=> (x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm S={1;2}

b, Với m khác 0, phương trình trở thành phương trình bậc 2 có:

Delta = (2m+1)2 - 4m(m+1)

         = 4m2+4m+1 - 4m2-4m

         = 1>0

Vậy phương trình luôn có 2 nghiệm phân biệt với m khác 0.

c, Vì phương trình có delta>0 với mọi giá trị của m khác 0 nên không có giá trị nào của m để phương trình có nghiệm kép.

22 tháng 11 2015

\(x=1,614835193\) (tic mình nha)

22 tháng 11 2015

(x+2)2 - (x-5)2 = (x+1)(x-1)

(x+2-x+5)(x+2+x-5) =x2 -1

x2 -1 = 7.(2x-3)

x2 -14x +20 =0

(x-7)2 = 29

x=7+\(\sqrt{29}\)

x=7-\(\sqrt{29}\)

13 tháng 4 2017

Theo hệ thức vi et x1+x2=-2(1);x1x2=k(2)

a, x1-x2=14<=>căn (x1-x2)2=14<=>căn [(x1+x2)2-4x1x2]=14, bạn thay nốt phần còn lại nhé

b, thay điều kiện trên vào (1) giải ra được x1 và x2 rồi thay vào (2) tìm được k

c, x12+x22=(x1+x2)2-2x1x2, bạn thay vào rồi giải nốt nhé

5 tháng 3 2016

\(\Leftrightarrow\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\)

\(\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\)

<=>\(\left(x+\frac{1}{y}\right)\left(x+\frac{1}{y}+1\right)=6\)

\(x+\frac{1}{y}+\frac{x}{y}=3\)

Đặt t=x+1/y ta dc: (dùng cách này chắc nhanh hơn ko bik nữa)

t.(t+1)=6

giải cái này xong tìm dc 2 cái t xong thế vô cái x+1/y + x/y =3 xong ==

21 tháng 6 2016

Đây là phương trình vô tỉ quen thuộc, em hãy cố gắng nhớ phương pháp để lần sau làm nhé .

ĐK: \(x\ge1\)

\(pt\Leftrightarrow\left(\sqrt{x}+\sqrt{x-1}\right)^2=4\Leftrightarrow x+2\sqrt{x^2-x}+x-1=4\)

\(\Leftrightarrow2\sqrt{x^2-x}=5-2x\)(ĐK: \(x\le\frac{5}{2}\))

\(\Leftrightarrow4\left(x^2-x\right)=25-20x+4x^2\Leftrightarrow16x=25\Leftrightarrow x=\frac{25}{16}\left(tmđk\right)\)

<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0

<=> (x2 - 2x)2 + x2 - 2x - 12 = 0

Đặt t = x2 - 2x

Khi đó ta có pt: t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)

*Với t = 3 ta có: x2 - 2x = 3

<=> x2 - 2x - 3 = 0

<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

*Với t = -4 ta có: x2 - 2x = -4

<=> x2 - 2x + 4 = 0

<=> (x - 1)2 + 3 = 0 (Vô nghiệm)

Vậy S = {3;-1}

10 tháng 3 2020

(x2-2x)+ (x-1)- 13 = 0

<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0

<=>  x^3 - 4x^3 + 5x^2 - 2x - 12 = 0

<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0

<=>  x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0

<=>  (x^3 - 5x^2 + 10x - 12)(x + 1) = 0

<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0

<=>  [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0

<=>  (x^2 - 2x + 4)(x - 3)(x + 1) = 0

có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0

<=> x - 3 = 0 hoặc x + 1 = 0

<=>  x = 3 hoặc x = -1

8 tháng 8 2017

1) \(\Delta'=1^2-\left(m-1\right)=2-m\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)

Khi đó \(x_1=1+\sqrt{2-m};x_2=1-\sqrt{2-m}\)

TH1: \(2\left(1+\sqrt{2-m}\right)-\left(1-\sqrt{2-m}\right)=7\Leftrightarrow1+3\sqrt{2-m}=7\)

\(\Leftrightarrow\sqrt{2-m}=2\Leftrightarrow2-m=4\Rightarrow m=-2\left(tm\right)\)

TH2: \(2\left(1-\sqrt{2-m}\right)-\left(1+\sqrt{2-m}\right)=7\Leftrightarrow1-3\sqrt{2-m}=7\) (VÔ LÝ)

Vậy m = - 2.

2) \(P=\frac{x^4+3x^2+1}{x^2+1}=\frac{\left(x^4+2x^2+1\right)+\left(x^2+1\right)+2}{x^2+1}=\left(x^2+1\right)+\frac{2}{x^2+1}+1\)

Vì \(x^2+1\ge1\), áp dụng bđt Cô si ta có:

 \(\left(x^2+1\right)+\frac{2}{x^2+1}\ge2\sqrt{\left(x^2+1\right).\frac{2}{x^2+1}}=2\sqrt{2}\)

Vậy \(P\ge2\sqrt{2}+1\)

Dấu bằng xảy ra khi

 \(x^2+1=\frac{2}{x^2+1}\Leftrightarrow x^2+1=\sqrt{2}\Rightarrow x^2=\sqrt{2}-1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{2}-1}\\x=-\sqrt{\sqrt{2}-1}\end{cases}}\)