K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

x bang 5

5 tháng 8 2016

bang 5

30 tháng 8 2018

a) \(x^3+x^2+x=-\frac{1}{3}\)

\(\Leftrightarrow3x^3+3x^2+3x=-1\)

\(\Leftrightarrow2x^3+\left(x^3+3x^2+3x+1\right)=0\)

\(\Leftrightarrow2x^3=-\left(x+1\right)^3\)

\(\Leftrightarrow x.\sqrt[3]{2}=-x-1\)

\(\Leftrightarrow x+x.\sqrt[3]{2}=-1\)

\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-1\)

\(\Leftrightarrow x=\frac{-1}{1+\sqrt[3]{2}}\)

b) \(x^3+2x^2+4x=-\frac{8}{3}\)

\(\Leftrightarrow3x^3+6x^2+12x=-8\)

\(\Leftrightarrow2x^3+\left(x^3+6x^2+12x+8\right)=0\)

\(\Leftrightarrow2x^3=-\left(x+2\right)^3\)

\(\Leftrightarrow x.\sqrt[3]{2}=-x-2\)

\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-2\)

\(\Leftrightarrow x=-\frac{2}{1+\sqrt[3]{2}}\)

21 tháng 6 2017

Xét \(x\left(x^3+1\right)-2< 0\)

\(\Rightarrow x\left(x^3-1\right)+2=2-x\left(x^3+1\right)\)

\(\Leftrightarrow x^4=0\)

\(\Leftrightarrow x=0\)

Xét \(x\left(x^3+1\right)-2\ge0\)

\(\Rightarrow x\left(x^3-1\right)+2=x\left(x^3+1\right)-2\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)

11 tháng 9 2015

Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)

\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)