Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{\sqrt{x^2}+1}\)hay\(\frac{5}{\sqrt{x^2+1}}\)v
b)
Đặt \(\sqrt{x-2}=a\); \(\sqrt{4-x}=b\)
Ta có hpt:
\(\hept{\begin{cases}a+b=-a^2b^2+3\\a^2+b^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-a^2b^2+3\\\left(a+b\right)^2-2ab-2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(-a^2b^2+3\right)^2-2ab-2=0\end{cases}}\)
Đặt ab=t rồi giải hệ nhé bạn
Phần b cách ngắn hơn nè:
\(\sqrt{x-2}-1+\sqrt{4-x}-1=x^2-6x+9\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2}\right)^2-1}{\sqrt{x-2}+1}+\frac{\left(\sqrt{4-x}\right)^2-1}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-x+3\right)=0\)
\(\Rightarrow x=3\)
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
giải pt:
a) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b) \(2x^4+8=4\sqrt{4+x^4}+4\sqrt{x^4-4}\)
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)