Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dk bn tự xđ nhé
\(\Leftrightarrow2\left(x^2-4x-8\right)-3\sqrt{x^2-4x-8}-2=0\)
đặt \(x^2-4x-8=y>=0\)
pt\(\Leftrightarrow2y^2-3y-2=0\Leftrightarrow\left(2y+1\right)\left(y-2\right)=0\)
đến đay bn tự làm nhé
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
a)ĐK \(x\ge2\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\dfrac{\sqrt{x-2}}{\sqrt{81}}=4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}.3\sqrt{x-2}+6\dfrac{\sqrt{x-2}}{9}=4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=4\)
\(\Leftrightarrow-\sqrt{x-2}=4\left(vl\right)\)
b) \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{x-1}\) (ĐK \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=\sqrt{x-1}\\1-\sqrt{x-1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1=0\left(vl\right)\\2\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{5}{4}\)
b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)
Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)
\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
Kl: x=19, y= 5, z=1890
\(2x^2+3x-5=0\)
\(< =>2x^2-2x+5x-5=0\)
\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x+5\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13
Điều kiện tự làm nhé.
\(\sqrt{\dfrac{10}{3-x}}+\sqrt{\dfrac{18}{5-x}}=4\)
\(\Leftrightarrow2-\sqrt{\dfrac{10}{3-x}}+2-\sqrt{\dfrac{18}{5-x}}=0\)
\(\Leftrightarrow\dfrac{\left(2-\sqrt{\dfrac{10}{3-x}}\right)\left(2+\sqrt{\dfrac{10}{3-x}}\right)}{2+\sqrt{\dfrac{10}{3-x}}}+\dfrac{\left(2-\sqrt{\dfrac{18}{5-x}}\right)\left(2+\sqrt{\dfrac{18}{5-x}}\right)}{2+\sqrt{\dfrac{18}{5-x}}}=0\)\(\Leftrightarrow\dfrac{4-\dfrac{10}{3-x}}{2+\sqrt{\dfrac{10}{3-x}}}+\dfrac{4-\dfrac{18}{5-x}}{2+\sqrt{\dfrac{18}{5-x}}}=0\)
\(\Leftrightarrow\dfrac{2-4x}{\dfrac{3-x}{2+\sqrt{\dfrac{10}{3-x}}}}+\dfrac{2-4x}{\dfrac{5-x}{2+\sqrt{\dfrac{18}{5-x}}}}=0\)
\(\Leftrightarrow\left(2-4x\right)\left(\dfrac{2+\sqrt{\dfrac{10}{3-x}}}{3-x}\right)+\left(2-4x\right)\left(\dfrac{2+\sqrt{\dfrac{18}{5-x}}}{5-x}\right)=0\)
\(\Leftrightarrow\left(2-4x\right)\left(\dfrac{2+\sqrt{\dfrac{10}{3-x}}}{3-x}+\dfrac{2+\sqrt{\dfrac{18}{5-x}}}{5-x}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy...
văn võ song toàn nhaaaa