Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
a)\(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}=3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-1\right|+\left|-\left(x+2\right)\right|=\left|x-1\right|+\left|-x-2\right|\)
\(\ge\left|x-1+\left(-x\right)-2\right|=3=VP\)
Đẳng thức xảy ra khi \(x=1\)
cái 1 thêm đk nữa quên mất
2, bình phương 2 vế luôn ( có điều kiện nữa vào)
đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4
\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2
(1-x)(x+4)=4
=>x=0;-3
1 chuyển vế bình phương đc
3x+7=4+4*sqrt(x+1) + x+1
2x+2=4*sqrt(x+1)
x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)
(sqrt(x+1)-1)^2=1
chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3
trường hớp 2 là sqrt(x+1)-1=-1=>x=-1
Đặt \(\hept{\begin{cases}\sqrt[3]{x+2}=a\\\sqrt[3]{7-x}=b\end{cases}\Rightarrow}a^3+b^3=9\)
Ta được hệ phương trình \(\hept{\begin{cases}a-b=1\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b+1\\\left(b+1\right)^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b+1\\2b^3+3b^2+3b-8=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
Đến đây đơn giản rồi :P
Cửa hàng đã bán hết 618kg bí đỏ và 619kg cà rốt. Bí đỏ có giá bán 10 nghìn đồng 1kg và cà rốt có giá bán là 9 nghìn đồng 1kg. Hỏi cửa hàng bán bí đỏ được bao nhiêu tiền và bán cà rốt được bao nhiêu tiền?
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
1. Xét điều kiện:
\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)
(1) <=> x \(\ge\)1 > 0 thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1
Do đó chỉ có thể xảy ra trường hợp x = 1
=> ĐK : x = 1
Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)
Vậy x = 1 là nghiệm của phương trình.
bài 2: ĐK:\(0\le x\le1\)
+) Với điều kiện: A,B không âm
\(\left(A+B\right)^2\ge A^2+B^2\)(1)
<=> \(A^2+B^2+2AB\ge A^2+B^2\)
<=> \(2AB\ge0\)luôn đúng
Dấu "=" xảy ra <=> A = 0 hoặc B = 0
Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)
=> \(\sqrt{1-x}+\sqrt{x}\ge1\)
Dấu "=" xảy ra <=> x = 0 hoặc x = 1
+) Với điều kiện C, D không âm
\(\left(C+D\right)^2\ge C^2-D^2\)(2)
Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)
<=> \(D\left(C+D\right)\ge0\)luôn đúng
Dấu "=" xayra <=> D = 0 hoặc C + D = 0
Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)
=> \(\sqrt{1+x}+\sqrt{x}\ge1\)
Dấu "=" xảy ra <=> x = 0
Vậy khi đó:
\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)
\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)
\(\ge1+1=2\)
Dấu "=" xảy ra <=> x = 0