K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2019

\(2sinx.cosx-cosx-\left(1-2sin^2x\right)+3sinx-1=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+2sinx-1\right)=0\)

\(\Leftrightarrow...\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

12 tháng 7 2018

3sin 2x+cos 2x=2cosx-1

<=>2√3 sinx.cox+cos2x -sin2x -2cosx+cos2x+sin2x=0

<=>2√3sinx.cosx+2cos2x -2cosx=0

<=>cosx(√3sinx+cosx -1)=0

*cosx=0 =>x=pi/2+k.pi

*√3sinx+cosx -1=0

<=>sin(x+pi/6)=1/2 <=>x=...

11 tháng 4 2016

Phương trình đã cho tương đương với :

\(1+\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}\cos2x-3\left(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x\right)=0\)

\(\Leftrightarrow1-\cos\left(2x+\frac{\pi}{3}\right)-3\sin\left(x+\frac{\pi}{6}\right)=0\)

\(2\sin^2\left(x+\frac{\pi}{6}\right)-2\sin\left(x+\frac{\pi}{6}\right)=0\Leftrightarrow\begin{cases}\sin\left(x+\frac{\pi}{6}\right)=0\\\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\end{cases}\) (Loại \(\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\))

Với \(\sin\left(x+\frac{\pi}{6}\right)=0\Rightarrow x=-\frac{\pi}{6}+k\pi,k\in Z\)

4 tháng 7 2017

A

NV
15 tháng 10 2020

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm