K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

1 tháng 2 2019

a)MTC 15

\(\dfrac{\left(x-3\right)\times3}{15}=\dfrac{6.15-\left(1-2x\right)\times5}{15}=\dfrac{3x-9}{15}=\dfrac{90-5-10x}{15}=3x-9=90-5-10x\Leftrightarrow3x+10x=90-5+9\)

1 tháng 2 2019

Chưa nghỉ tết à :))

\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)

\(\Rightarrow3\left(x-3\right)=6.15-5\left(1-2x\right)\)

\(\Leftrightarrow3x-9=90-5+10x\)

\(\Leftrightarrow3x-10x=90-5+9\)

\(\Leftrightarrow-7x=94\)

\(\Leftrightarrow x=-\dfrac{94}{7}\)

Vậy.....

\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

\(\Rightarrow2\left(3x-2\right)-5.12=3\left[3-2\left(x+7\right)\right]\)

\(\Leftrightarrow6x-4-60=-6x-33\)

\(\Leftrightarrow6x+6x=-33+60+4\)

\(\Leftrightarrow12x=31\)

\(\Leftrightarrow x=\dfrac{31}{12}\)

Vậy.....

\(c,2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)

\(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)

\(\Leftrightarrow2x+x=5-\dfrac{13}{5}-\dfrac{6}{5}\)

\(\Leftrightarrow3x=\dfrac{6}{5}\)

\(\Leftrightarrow x=\dfrac{2}{5}\)

Vậy.....

\(d,\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)

\(\Rightarrow28\left[5\left(x-1\right)+2\right]-42\left(7x-1\right)=24\left[2\left(2x+1\right)\right]-5.168\)

\(\Leftrightarrow140x-84-294x+42=96x+48-840\)

\(\Leftrightarrow140x-294x-96x=48-840-42+84\)

\(\Leftrightarrow-250x=-750\)

\(\Leftrightarrow x=3\)

Vậy.....

\(e,\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Rightarrow6\left(x-1\right)+3\left(x-1\right)=12-4\left[2\left(x-1\right)\right]\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=12+8+3+6\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy.....

\(g,\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2}{2001}-\dfrac{x}{2001}-1=\dfrac{1}{2002}-\dfrac{x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow-\dfrac{x}{2001}+\dfrac{x}{2002}+\dfrac{x}{2003}=\dfrac{1}{2002}+1-\dfrac{2}{2001}\)

\(\Leftrightarrow x\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)=1+\dfrac{1}{2002}-\dfrac{2}{2001}\)

\(\Leftrightarrow x=\dfrac{\left(1+\dfrac{1}{2002}-\dfrac{2}{2001}\right)}{\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)}=2003\)

Vậy.....

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

11 tháng 8 2021

\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)

\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)

\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)

\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)

\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)

Tick nha

2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)

\(\Leftrightarrow6x-18=15-5x\)

\(\Leftrightarrow11x=33\)

hay x=3

9 tháng 7 2017

ĐKXĐ: \(x\ne-1;x\ne2\)

\(\dfrac{x^2-x}{x^2-x+1}-\dfrac{x^2-x+2}{x^2-x-2}=1\) (1)

\(\Leftrightarrow\dfrac{x^2-x}{x^2-x+1}-\dfrac{x^2-x+2}{x^2-x-2}-1=0\)

\(\Leftrightarrow\dfrac{\left(x^2-x-2\right)\left(x^2-x\right)-\left(x^2-x+1\right)\left(x^2-x+2\right)-\left(x^2-x+1\right)\left(x^2-x-2\right)}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=0\)

\(\Leftrightarrow\dfrac{2x^3-5x^2+4x-x^4}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=0\)

\(\Leftrightarrow2x^3-5x^2+4x-x^4=0\)

\(\Leftrightarrow x\left(2x^2-5x+4-x^3\right)=0\)

\(\Leftrightarrow x\left(-x^3+2x^2-5x+4\right)=0\)

\(\Leftrightarrow x\left(-x^3+x^2+x^2-x-4x+4\right)=0\)

\(\Leftrightarrow x\left[-\left(x-1\right)\right]\left(x^2-x+4\right)=0\)

\(\Leftrightarrow-x\left(x-1\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\\x^2-x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(đk:x\ne-1;x\ne2\right)\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{0;1\right\}\)

25 tháng 2 2019

Chào tiểu thư ^_^ !
1)Rút gọn biểu thức
\(Q=\dfrac{1}{1^4+1^2+1}+\dfrac{2}{2^4+2^2+1}+...+\dfrac{n}{n^4+n^2+1}\)

\(Q=\dfrac{1}{1^4\left(1+1^{-2}+1^{-4}\right)}+\dfrac{2}{2^4\left(1+1^{-2}+1^{-4}\right)}+...+\dfrac{n}{n^4\left(1+1^{-2}+1^{-4}\right)}\\ \Leftrightarrow Q=\dfrac{1}{3}+\dfrac{1}{2^3.3}+...+\dfrac{1}{n^3.3}\\ \Leftrightarrow Q=\dfrac{1}{3}\left(\dfrac{1}{2^3}+...+\dfrac{1}{n^3}\right)\\ \Leftrightarrow Q=\dfrac{1}{3}\left(\dfrac{1}{8}+...+\dfrac{1}{n^3}\right)\)
2 Giải pt
\(\dfrac{4x^2+14}{x^2+6}-\dfrac{5}{x^2+1}=\dfrac{7}{x^2+3}+\dfrac{9}{x^2+5}\\ \Leftrightarrow\dfrac{4x^2+14}{x^2+6}-3-\dfrac{5}{x^2+1}+1-\dfrac{7}{x^2+3}+1-\dfrac{9}{x^2+5}+1=0\\ \Leftrightarrow\dfrac{4x^2+14-3x^2-18}{x^2+6}-\dfrac{5+x^2+1}{x^2+1}-\dfrac{7+x^2+3}{x^2+3}-\dfrac{9+x^2+5}{x^2+5}=0\\ \Leftrightarrow\dfrac{x^2-4}{x^2+6}-\dfrac{x^2-4}{x^2+1}-\dfrac{x^2-4}{x^2+3}-\dfrac{x^2-4}{x^2+5}=0\\ \Leftrightarrow\left(x^2-4\right)\left(\dfrac{1}{x^2+6}-\dfrac{1}{x^2+1}-\dfrac{1}{x^2+3}-\dfrac{1}{x^2+5}\right)=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=2\)Vậy pt có nghiệm là x=2
Chúc tiểu thư học tốt ! vui TDVN2005.

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\\ ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\\ \Rightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}+\dfrac{1}{\left(x^2+6x\right)+\left(7x+42\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{18\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}-\dfrac{18\left(x+5\right)}{18\left(x+5\right)\left(x+7\right)}=\dfrac{\left(x+5\right)\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}\\ \Rightarrow18x+126-18x-90=x^2+5x+7x+35\\ \Leftrightarrow x^2+12x+35=36\\ \Leftrightarrow x^2+12x-1=0\\ \Leftrightarrow x^2+12x+36-37=0\\ \Leftrightarrow\left(x^2+12x+36\right)-37=0\\ \Leftrightarrow\left(x+6\right)^2-37=0\\ \Leftrightarrow\left(x+6+\sqrt{37}\right)\left(x+6-\sqrt{37}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+6+\sqrt{37}=0\\x+6-\sqrt{37}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6-\sqrt{37}\\x=\sqrt{37}-6\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\sqrt{37}-6;-\sqrt{37}-6\right\}\)