Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bước làm:
Thử nghiệm: x = 2 là nghiệm
------> Thử xem các cách làm tất nhiên là không thể bình phương -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ
+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3
-----------------------------------------------------------------------------------------------------------------------
Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)
<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)
<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi \(1\le x\le3\))
<=> x - 2 = 0
<=> x = 2 thỏa mãn đk
ĐKXĐ : ....
PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)
\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)
Điều kiện 1 =<x=<3
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)
\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)
<=> x=2(tmđk)
\(2x^2-8x-3\sqrt{x^2-4x-5}=12\) (Điều kiện xác định : \(\hept{\begin{cases}x\le2-\sqrt{10}\\x\ge5\end{cases}}\))
\(\Leftrightarrow2\left(x^2-4x-5\right)-3\sqrt{x^2-4x-5}-2=0\)
Đặt \(t=\sqrt{x^2-4x-5},t\ge0\) , phương trình trên trở thành : \(2t^2-3t-2=0\Leftrightarrow\left(t-2\right)\left(2t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-\frac{1}{2}\left(\text{loại}\right)\end{cases}}\)
Với t = 2 ta có phương trình \(x^2-4x-5=4\Leftrightarrow x^2-4x-9=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{13}\left(\text{nhận}\right)\\x=2-\sqrt{13}\left(\text{nhận}\right)\end{cases}}\)
Kết luận : Tập nghiệm của phương trình : \(S=\left\{2-\sqrt{13};2+\sqrt{13}\right\}\)
a,
\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)
\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)
b,tự nàm
c,
\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)
\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)
đặt \(\sqrt{8x+1}=a\)
=>a4=10a2+64a+55
nhận thấy phương trình có dạng x4=ax2+bx+c
tìm số m sao cho b2-4(2m+a)(m2+c)=0
sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra
b)đk \(x\ge1\)
\(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)
\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)
\(\Leftrightarrow x+\left|x-2\right|=2014\)
giai 2 pt
pt1 x+x-2=2014
x=1008
pt2 x+2-x=2014(vô lý)
\(4x^2+8x=\sqrt{2x+6}\Leftrightarrow\left(4x^2+8x\right)\left(4x^2+8x\right)=2x+6\)
\(\Leftrightarrow16x^4+64x^3+64x^2=2x+6\Leftrightarrow8x^4+32x^3+32x^2=x+3\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x=3\Leftrightarrow8x^2\left(x^2+4x+4\right)-1=x+2\)
\(\Leftrightarrow8x^2.\left(x+2\right)^2-1=x+2\Leftrightarrow8x^2.\left(x+2\right)-1=1\)
\(\Leftrightarrow8x^2\left(x+2\right)=2\)
\(\Leftrightarrow x^2\left(x+2\right)=\frac{1}{4}\)
\(\Leftrightarrow x+2=\frac{1}{4x^2}\Leftrightarrow x=\frac{1-8x^2}{4x^2}\)
P/s: mk ms học lp 6 nếu sai thông cảm nhé!
shitbo sai rồi nha!
ĐKXĐ: \(x\ge-3\).Thêm \(2x+\frac{25}{4}\)vào hai vế.
Phương trình đã cho tương đương với \(4x^2+10x+6\frac{1}{4}=2x+6+\sqrt{2x+6}+\frac{1}{4}\)
\(\Leftrightarrow\left(2x+\frac{5}{2}\right)^2=\left(\frac{1}{2}+\sqrt{2x+6}\right)^2\)
Xét \(2x+\frac{5}{2}=\frac{1}{2}+\sqrt{2x+6}\Leftrightarrow2x+2=\sqrt{2x+6}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\2x^2+3x-1=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{17}}{4}\left(TM\right)\)
Xét \(2x+\frac{5}{2}=-\frac{1}{2}-\sqrt{2x+6}\Leftrightarrow2x+3=-\sqrt{2x+6}\) và giải tương tự.