Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:
\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)
Đặt \(3x-5+\frac{2}{x}=a\)
\(\frac{2}{a}+\frac{13}{a+6}=6\)
\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)
\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)
1 cách ngu học
\(\left(2x+2\right)\sqrt{5x-6}=x^2+7x-6\)
\(\Leftrightarrow4.\left(x+1\right)^2.\left(5x-6\right)=\left(x^2+7x-6\right)^2\)
\(\Leftrightarrow20x^3-24x^2+40x^2-48x+20x-24=\left(x^2+7x-6\right)^2\)
\(\Leftrightarrow20x^3+16x^2-28x-24=\left(x^2+7x-6\right)^2\)
\(\Leftrightarrow20x^3+16x^2-28x-24-\left(x^2+7x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Xét thấy x = 0 không thỏa mãn pt
Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)
\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)
\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)
Đặt \(x+\frac{1}{x}=a\)
\(pt\Leftrightarrow6a^2-7a-48=0\)
\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)
\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)
\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)
\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)
\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)
Giải nốt nha bạn. Nghiệm hơi xấu
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
Đặt \(t=2x^2+3x-1\) thì pt trở thành :
\(t\left(t-5\right)=-4\) \(\Leftrightarrow t^2-5t+4=0\)
\(\Leftrightarrow t^2-t-4t+4=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=1\\2x^2+3x-1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-2\\x=-\frac{5}{2}\\x=1\end{matrix}\right.\) ( TM )
\(\Leftrightarrow\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)+4=0\)
\(\Leftrightarrow\left(2x^2+3x-1-1\right)\left(2x^2+3x-1-4\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
Bấm máy...
Lời giải:
ĐKXĐ: \(x\geq \frac{6}{5}\)
PT \(\Leftrightarrow 2(x+1)\sqrt{5x-6}=(x+1)^2+5x-6-1\)
\(\Leftrightarrow (x+1)^2+(5x-6)-2(x+1)\sqrt{5x-6}-1=0\)
\(\Leftrightarrow (x+1-\sqrt{5x-6})^2-1=0\)
\(\Leftrightarrow (x+2-\sqrt{5x-6})(x-\sqrt{5x-6})=0\)
\(\Rightarrow \left[\begin{matrix} x+2=\sqrt{5x-6}\\ x=\sqrt{5x-6}\end{matrix}\right.\)
Nếu \(x+2=\sqrt{5x-6}\Rightarrow \left\{\begin{matrix} x\geq -2\\ (x+2)^2=5x-6\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2-x+10=0\end{matrix}\right.\) (dễ thấy vô nghiệm)
Nếu \(x=\sqrt{5x-6}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=5x-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x^2-5x+6=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-2)(x-3)=0\end{matrix}\right.\Rightarrow x=2; x=3\) là nghiệm của PT
Vậy.......
Cách khác nhưng ko hay!
ĐK \(x\ge\frac{6}{5}\)
Bớt 12x - 12 ở các hai vế, pt tương đương với:
\(2\left(x+1\right)\sqrt{5x-6}-12\left(x-1\right)=x^2-5x+6\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=2\left[\left(x+1\right)\sqrt{5x-6}-6\left(x-1\right)\right]\)
Nhân liên hợp ở vế phải: \(\Leftrightarrow\left(x-3\right)\left(x-2\right)-\frac{2\left(x-3\right)\left(x-2\right)\left(5x-7\right)}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left[1-\frac{1}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}\right]\) = 0
Xét cái ngoặc to: \(1-\frac{1}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}>1-\frac{1}{6\left(\frac{6}{5}-1\right)}=1-\frac{5}{6}=\frac{1}{6}>0\)
Nên cái ngoặc to vô nghiệm. Giải 2 cái ngoặc to x = 3; x = 2 (TM)