K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

gợi ý nha (mik lm còn j là hok nx )   (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc

            Muốn chứng minh được ta phải chứng minh vế trái    

(x2+bx+ax+ab)(x+c)=x3+ax2+bx2+cx2+abx+bcx+acx+abc

     x3+ax2+bx2+cx2+abx+bcx+acx+abc=x3+ax2+bx2+cx2+abx+bcx+acx+abc(1)

Vì hai biểu thức trên (1) giông nhau

               Do đó (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc

1 tháng 5 2020

Chắc ko phải cách khác đâu, mà là chi tiết thôi :))

1 tháng 5 2020

Cách khác:

x3 - (a + b + c)x2 = -(ab + ac + bc)x + abc

\(\Leftrightarrow\) x3 - (a + b + c)x2 + (ab + ac + bc)x - abc = 0

\(\Leftrightarrow\) x3 - ax2 + bx2 + cx2 + abx + acx + bcx - abc = 0

\(\Leftrightarrow\) (x3 - ax2) - (bx2 - abx) - (cx2 - cax) + (bcx - abc) = 0

\(\Leftrightarrow\) x2(x - a) - bx(x - a) - cx(x - a) + bc(x - a) = 0

\(\Leftrightarrow\) (x - a)[(x2 - bx) - (cx - bc)] = 0

\(\Leftrightarrow\) (x - a)[x(x - b) - c(x - b)] = 0

\(\Leftrightarrow\) (x - a)(x - b)(x - c) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-a=0\\x-b=0\\x-c=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=a\\x=b\\x=c\end{matrix}\right.\)

Vậy S = {a; b; c}

Chúc bn học tốt!!

8 tháng 4 2020

Nguyễn Hoàng Gia Bảo: Hah!!! Làm một bài trong 2 phút, mik ước chừng mik lm tầm 5 đến 7 phút ms xong :)) God chăng ??

10 tháng 3 2019

c)\(\Leftrightarrow x^7+x^6-x^6-x^5+2x^5+2x^4-x^4-x^3+2x^3+2x^2-x^2-x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^6-x^5+2x^4-x^3+2x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^6-x^5+2x^4-x^3+2x^2-x+1=0\end{matrix}\right.\)

d)\(x^{10}+x^8+x^6+x^4+x^2+1=0\)

\(\Leftrightarrow\left(x^2+x+1\right)x^6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+x+1=0\left(vl\right)\end{matrix}\right.\)

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)

26 tháng 3 2020

a) x(x+2)+a2-3=2a(x+1)

<=> x2+2x-2ax+a2-2a-3=0

<=> (x2-ax-x)-(ax-a2-a)+(3a-3a-3)=0

<=> (x-a-1)(x-a+3)=0

\(\Leftrightarrow\orbr{\begin{cases}x=a+1\\x=a-3\end{cases}}\)

ê ta làm dc bài này rồi , t í ch phát làm luôn , ez

thay

x=...

y=...

z=...

vào là làm được