Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Leftrightarrow\dfrac{5x-150}{50}-1+\dfrac{5x-102}{49}-2+\dfrac{5x-56}{48}-3+\dfrac{5x-12}{47}-4+\dfrac{5x-660}{46}+10=0\)
\(\Leftrightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Leftrightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
\(\Leftrightarrow5x-200=0\)
\(\Leftrightarrow x=40\)
b)
\(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Rightarrow\left(\dfrac{5x-150}{50}-1\right)+\left(\dfrac{5x-102}{49}-2\right)+\left(\dfrac{5x-56}{48}-3\right)+\left(\dfrac{5x-12}{47}-4\right)\)
\(+\left(\dfrac{5x-660}{46}+10\right)=0\)
\(\Rightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Rightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
\(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\ne0\)
\(\Rightarrow5x-200=0\Rightarrow x=40\)
\(pt\Leftrightarrow\frac{5x-150}{50}+\frac{5x-102}{49}+\frac{5x-56}{48}+\frac{5x-12}{47}+\frac{5x-16}{46}-14=0\)
\(\Leftrightarrow\frac{5x-150}{50}-1+\frac{5x-102}{49}-2+\frac{5x-56}{48}-3+\frac{5x-12}{47}-4+\frac{5x-16}{46}-4=0\)
\(\Leftrightarrow\frac{5x-200}{50}+\frac{5x-200}{49}+\frac{5x-200}{48}+\frac{5x-200}{47}+\frac{5x-200}{46}=0\)
\(\Leftrightarrow\left(5x-200\right)\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}\right)=0\)
Do \(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}\ne0\) nên \(5x-200=0\Rightarrow x=\frac{200}{5}=40\)
Vậy x= 40
\(\frac{5x-150}{50}+\frac{5x-102}{49}+\frac{5x-56}{48}+\frac{5x-12}{47}+\frac{5x-660}{46}=0\)
\(\Leftrightarrow\)\(\left(\frac{5x-150}{50}-1\right)+\left(\frac{5x-102}{49}-2\right)+\left(\frac{5x-56}{48}-3\right)+\left(\frac{5x-12}{47}-4\right)+\left(\frac{5x-660}{46}+10\right)=0\)
\(\Leftrightarrow\)\(\frac{5x-200}{50}+\frac{5x-200}{49}+\frac{5x-200}{48}+\frac{5x-200}{47}+\frac{5x-200}{46}=0\)
\(\Leftrightarrow\)\(\left(5x-200\right)\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}\right)=0\)
\(\Leftrightarrow\)\(5x-200=0\)
\(\Leftrightarrow\)\(5x=200\)
\(\Leftrightarrow\)\(x=40\)
Vậy x = 40
Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
\(\dfrac{2x-1}{\left(x-2\right)^2}+\dfrac{5x}{x-2}-\dfrac{25x}{5\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{\left(2x-1\right).5}{\left(x-2\right)^2.5}+\dfrac{5x\left(x-2\right).5}{\left(x-2\right).\left(x-2\right).5}-\dfrac{25x\left(x-2\right)}{5\left(x-2\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{10x-5+25x^2-50x-25x^2+50x}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{10x-5}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{5\left(2x-1\right)}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{2x-1}{x-2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Ta có : \(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Leftrightarrow\dfrac{5x-150}{50}-1+\dfrac{5x-102}{49}-2+\dfrac{5x-56}{48}-3+\dfrac{5x-12}{47}-4+\dfrac{5x-660}{46}+10=0\)
\(\Leftrightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Leftrightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
\(\Leftrightarrow5x-200=0\)
\(\Leftrightarrow x=40\)
Vậy ...
Ta có: \(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Leftrightarrow\dfrac{5x-150}{50}-1+\dfrac{5x-102}{49}-2+\dfrac{5x-56}{48}-3+\dfrac{5x-12}{47}-4+\dfrac{5x-660}{46}+10=0\)
\(\Leftrightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Leftrightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}>0\)
nên 5x-200=0
\(\Leftrightarrow5x=200\)
hay x=40
Vậy: S={40}