\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)

Giúp mình với, mình đa...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

25 tháng 9 2021

\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

17 tháng 8 2020

a,\(\sqrt{1-x}=\sqrt[3]{27}\left(đk:x\le1\right)\Leftrightarrow\sqrt{1-x}=3\)

\(< =>\sqrt{1-x}^2=9< =>1-x=9< =>x=-8\)tm

b,\(\sqrt{x^2-10x+25}=x+1\)

\(< =>\sqrt{\left(x-5\right)^2}=x+1\)

\(< =>|x-5|=x+1\)

\(< =>\orbr{\begin{cases}-x+5=x+1\left(x< 5\right)\\x-5=x+1\left(x\ge5\right)\end{cases}}\)

\(< =>\orbr{\begin{cases}2x=4< =>x=2\left(tm\right)\\-5-1=0\left(vo-li\right)\end{cases}}\)

c, Đặt \(\sqrt{x}=t\left(t\ge0\right)\)khi đó pt tương đương

\(t^2+t-6=0< =>t^2-2t+3t-6=0\)

<\(< =>t\left(t-2\right)+3\left(t-2\right)=0< =>\left(t+3\right)\left(t-2\right)=0\)

\(< =>\orbr{\begin{cases}t+3=0\\t-2=0\end{cases}}< =>\orbr{\begin{cases}t=-3\left(ktm\right)\\t=2\left(tm\right)\end{cases}}\)

khi đó ta được \(\sqrt{x}=t< =>x=4\)

17 tháng 8 2020

a) \(\sqrt{1-x}=\sqrt[3]{27}\)

\(\Leftrightarrow\sqrt{1-x}=3\)

\(\Leftrightarrow1-x=9\)

\(\Rightarrow x=-8\)

b) \(\sqrt{x^2-10x+25}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+1\)

\(\Leftrightarrow\left|x-5\right|=x+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=x+1\\x-5=-x-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}0=6\left(vl\right)\\2x=4\end{cases}}\Rightarrow x=2\)

c) \(x+\sqrt{x}-6=0\)

\(\Leftrightarrow\left(x+3\sqrt{x}\right)-\left(2\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=-3\left(vl\right)\end{cases}}\Rightarrow x=4\)

30 tháng 11 2019

Ảo diệu như hay.

ĐKXĐ: \(x\le2\)

\(PT\Leftrightarrow\left(2\sqrt{2-x}+3\right)\left(1-\sqrt{2-x}\right)\left(3-4x-2\sqrt{2-x}\right)=0\)

...

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

15 tháng 11 2019

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe

21 tháng 9 2020

Ta có: \(x^4+16x^2+32=0\Leftrightarrow\left(x^2-8\right)^2-32=0\left(1\right)\)

Với \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\Leftrightarrow x=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

\(\Rightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

Thay x vào vế phải của (1) ta được:

\(\left(x^2-8\right)^2-32=\left(8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}-8\right)^2-32\)

\(=4\left(2+\sqrt{3}\right)+4\sqrt{3}+12\left(2-\sqrt{3}\right)-32\)

\(=8+4\sqrt{3}+8\sqrt{3}+24-12\sqrt{3}-32=0\)= vế phải

Vậy \(x-\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình đã cho(đpcm)