Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định bạn tự tìm
a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý
pt vô nghiệm
b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)
<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)
c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)
<=>x=2 còn cái kia vô nghiệm
bạn tự trình bày chi tiết nhé
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=1-2a-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
Các câu còn lại tương tự nha
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=\left(1-2a\right)-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-2^2\right)^2}\)
\(=x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
\(d,2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{x-5}{x-5}\)
\(=2x-1-1\)
\(=2x-2\)
\(=2\left(x-1\right)\)
\(\sqrt{x^2-x-6}=\sqrt{x-3}\)
Tự xét điều kiện nha
\(\Leftrightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(\sqrt{x^2-x}=\sqrt{3x-5}\)
\(\Leftrightarrow x^2-x=3x-5\)
\(\Leftrightarrow x^2-4x+5=0\)
vô nghiệm
k đi rồi mình giải cho