Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =>(x+3)(x-2)-2(x+1)2=(x-3)2-2x(x-2)
=>x2+x-6-2(x2+2x+1)=x2-6x+9-2x2+4x
=>x2+x-6-2x2-4x-2-x2+6x-9+2x2-4x=0
=>-x-17=0
=>x=-17
b)=>x3-6x2+12x-8+x2-10x+25=x3-5x2-7x+3
=>x3-5x2+2x+17-x3+5x2+7x-3=0
=>9x+14=0
=>x=\(\frac{-14}{9}\)
(x-5)^2+(x+3)^2 = x^2 -10x + 25 + x^2 + 6x +9= 2(x^2 - 16) -5x +7 = 2(x-4)(x+4) - 5x + 7
a) =>(x+3)(x-2)-2(x+1)2=(x-3)2-2x(x-2)
=>x2+x-6-2(x2+2x+1)=x2-6x+9-2x2+4x
=>x2+x-6-2x2-4x-2-x2+6x-9+2x2-4x=0
=>-x-17=0
=>x=-17
=>x3-6x2+12x-8+x2-10x+25=x3-5x2-7x+3
=>x3-5x2+2x+17-x3+5x2+7x-3=0
=>9x+14=0
=>x=\(-\frac{14}{9}\)
Đặt bt trong ngoặc đầu tiên = t
pt trở thành
\(t\left(t-2\right)-3=0\Leftrightarrow t^2-2t-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)
với t=3, ta có:
\(x^2+2x-1=3\Leftrightarrow x^2+2x-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
t= -1 tương tự
1. \(x^2+y^2+z^2=x\left(y+z\right)\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\Leftrightarrow\left(x-y\right)^2+y^2+z^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\y^2=0\\z^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Vậy nghiệm của phương trình : (x;y;z) = (0;0;0)
2. Bạn xem lại đề !
\(\sqrt{x+1}-\sqrt{y+1}+\sqrt{9-y}-\sqrt{9-x}=0\)Liên hợp có x-y=0
thay vào PT đầu
\(\sqrt{x+1}+\sqrt{9-x}=4\)
BP
\(\sqrt{\left(x+1\right)\left(9-x\right)}=3\)
(x+1)((9-x)=9=> x=0 hoạc x=8
(xy)=(0,0);(8,8)
Đặt ẩn phụ x^2+x=y (*) được
y(y+1)=42
<=> y^+y-42=0
<=> (y-6)(y+7)=0
<=> y=6 hoặc y=-7
Thay y=6 vào (*) được
x^2+x=6
<=> x^2+x-6=0
<=> (x-2)(x+3) = 0
<=> x = 2 hoặc x=-3
thay y = -7 vào (*) rồi làm tương tự
thanks so much