K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

\(\Delta=b^2-4ac=9-4.1.\left(-3\right)=21>0\)

=> phương trình có 2 nghiệm phân biệt

\(\orbr{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{21}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{21}}{2}\end{cases}}\)

\(S=\left\{...\right\}\)bn tự viết nha!!!

12 tháng 5 2018

Đây là x^3 mà. Không dùng delta được

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

9 tháng 10 2021

tl

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

^HT^

5 tháng 2 2023

\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

Mấy câu còn lại mình giải rồi 

5 tháng 2 2023

Ok cảm ơn bạn =)

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

5 tháng 9 2019

<=> x4+3x3=14x2+6x-4

\(\Leftrightarrow x^4+3x^3-\frac{7}{4}x^2-6x+4=\frac{49}{4}x^2\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2=\frac{49}{4}x^2\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2-\frac{49}{4}x^2=0\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2+\frac{7}{2}x\right)\left(x^2+\frac{3}{2}x-2-\frac{7}{2}x\right)=0\)

\(\Leftrightarrow\left(x^2+5x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x-2=0\\x^2-2x-2=0\end{cases}}\)

Đến đây bn tự làm tiếp nha

tk mk vs 

7 tháng 6 2016

PT \(\Leftrightarrow x^3-6x-3=0\)

Phương trình nếu có nghiệm hữu tỷ thì nghiệm đó chỉ có thể là -3; -1; 1; 3. Thử vào thấy không thỏa mãn nên phương trình trên không có nghiệm hữu tỷ => Không giải được với kiến thức phổ thông.

18 tháng 4 2018

x(3x-1)-6x+2=0

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

1) Ta có: \(x^3-3x^2+2x=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={0;1;2}

2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)

\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)

\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)

\(\Leftrightarrow-x^2-2x=0\)

\(\Leftrightarrow-x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: S={0;-2}

28 tháng 6 2021

       3x2+2x=0

<=>x(3x+2)=0

<=>x=0 hoặc 3x+2=0

từ đó bạn giải ra x thuộc{0;-2/3}

chúc bạn học tốt và nhớ tích đúng cho mình

 

9 tháng 5 2018

x.(2x^2+5x-3)=0 
x.(2x^2-x+6x-3)=0 
x.(2x-1).(x+3)=0 
-> x=0 hoặc x=-3 hoặc x=1/2