K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

1 tháng 4 2017

Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.

Câu 1: Mình làm mẫu câu a thôi nhé.

a/ \(x^2-2\sqrt{3}x-6=0\)

( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )

\(\Delta=b^2-4ac\)

    \(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)

    \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)

Vậy:..

Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)

( a = 1; b = -2(2m+1); c = 4m^2 + 2 )

\(\Delta=b^2-4ac\)

    \(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)

     \(=4\left(4m^2+4m+1\right)-16m^2-8\)

     \(=16m^2+16m+4-16m^2-8\)

     \(=16m-4\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)

31 tháng 3 2017

ko hỉu

12 tháng 2 2016

\(\int^{3x-4y=-2}_{5x+2y=14}\Rightarrow\int^{3x-4y=-2}_{10x+4y=28}\)

Cộng 2 vế ta đc: 13x = 26 => x = 2

Thay x = 2 vào 3x - 4y = -2 ta đc:

3.2 - 4y = -2 => 4y = 8 => y = 2 

Vậy x = 2 , y = 2

12 tháng 2 2016
  • 3x-4y=-2
  • 10x+4y=28

=>cộng hai pt

=>13x=26=> x=2=>y=2

9 tháng 8 2017

cái này có một cách rất dễ:Với máy fx570Vn chẳng hạn,bn bấm Mode>>>Mũi tên xuống>>>1>>>1>>>1>>>3=-5=1=là có kết quả

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)