K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

bớt đăng tùm bậy để kiếm điểm đi em ơi

26 tháng 1 2016

\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16+1\right)=6x\)
\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16\right)+x^2+9-6x=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2=0\)
\(\left(x^2+9\right)\left(x-4\right)^2\ge0\)
Dấu "=" xảy ra <=> x=4
\(\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> x=3
\(\Rightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> đồng thời x=4 và x=3 -> vô nghiệm

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)

b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)

13 tháng 3 2018

Ai đó giải cụ thể hơn đc không

12 tháng 6 2015

a) Tự giải

b) xét denta, đặt điều kiện của m

xét viet x1+x2 vs x1.x2

từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11 

thế viet vao giải, nhơ so sánh đk

9 tháng 12 2015

\(\Leftrightarrow x^4+16x^2+100+8x^3+80x+20x^2-7x^2-28x-77+7<0\)

\(x^4+8x^3+29x^2+52x+30<0\)

tự làm tiếp nha

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\)  hay \(x^2-2x-2=0\)  hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)

b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)

hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)

x- 8x - 9  ≥ 0

<=> (x+1)(x-9)\(\ge\)0

<=> \(\hept{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)

<=> \(\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)

30 tháng 8 2017

\(\left(x^2-2x+6\right)\left(x^2-8x+4\right)+\left(5x+1\right)\left(x+1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow x^8-5x^2+7x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)

Xong rồi nhé

25 tháng 6 2019

\(\left(x^2-2x+6\right)\left(x^2-8x-4\right)+\left(5x+1\right)\)\(\left(x-1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=\)\(0\)

\(\Leftrightarrow x^8-5x^2+7x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)

~ 양 셜 김 ~