K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Mới lớp 8 thôi ạ. Cái kết quả trên là bấm máy ra như vậy. 

14 tháng 9 2016

Bài khó! Không biết làm, máy tính cho ra 2 kết quả như này:

x= 1,618033989... 

x= -0,618033988 ...

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)

13 tháng 8 2016

1.

\(\text{ĐK: }x\ge\frac{1}{2}\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)

\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)

\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)

14 tháng 8 2016

cảm ơn nhìu nkoa b!!!

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 6:

ĐK: $x\geq \frac{2}{3}$

Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$

PT trở thành:

$a-b=a^2-b^2$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)

Nếu $a+b-1=0$

$\Leftrightarrow b=1-a$

$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$

$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$

$\Leftrightarrow x+4=2\sqrt{4x+1}$

$\Rightarrow (x+4)^2=4(4x+1)$

$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$

Vậy.......

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 5:

ĐK: $x\geq -2$

PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$

Khi đó PT trở thành:
$3ab=2b^2+a^2$

$\Leftrightarrow a^2-3ab+2b^2=0$

$\Leftrightarrow a(a-b)-2b(a-b)=0$

$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+2-(x^2-2x+4)=0$

$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)

Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$

$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$

$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)

Vậy.........

ĐKXĐ: x2 - 3x + 3 \(\ge\) 0

Đặt t = \(\sqrt{x^2-3x+3}\) (t \(\ge\) 0)

=> t2 = x2 - 3x + 3 <=> x2 - 3x = t2 - 3

Khi đó ta có pt: 2(t2 - 3) + t + 3 = 0

<=> 2t2 - 6 + t + 3 = 0

<=> 2t2 + t - 3 = 0

<=> (t - 1)(2t + 3) = 0 <=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{3}{2}\left(ktm\right)\end{cases}}\)

Với t = 1 ta có: x2 - 3x = 12 - 3

<=> x2 - 3x+  2 = 0

<=> (x - 1)(x - 2) = 0 <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy S = \(\left\{1;2\right\}\)

15 tháng 3 2020

Đặt: \(\sqrt{x^2-3x+3}=t\ge0\)

=> \(2x^2-6x=2\left(x^2-3x\right)=2\left(t^2-3\right)\)

Ta có phương trình ẩn t : \(2\left(t^2-3\right)+t+3=0\)

<=> \(2t^2+t-3=0\)<=> t = 1 ( tm ) hoặc t = -3/2 ( loại)

Với t = 1 ta có: \(\sqrt{x^2-3x+3}=1\)

<=> \(x^2-3x+2=0\)

<=> x = 1 hoặc x = 2