Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-x^2+6x-5\) (ĐKXĐ : \(1\le x\le5\) )\
Ta có : \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)
\(\Rightarrow\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}\ge1+3=4\)
Lại có : \(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)
Do đó, phương trình tương đương với : \(\begin{cases}1\le x\le5\\\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=4\\-x^2+6x-5=4\end{cases}\)\(\Rightarrow x=3\left(TM\right)\)
Vậy nghiệm của phương trình là x = 3
b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Mặt khác, ta có : \(\begin{cases}\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{cases}\)\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)
Dấu đẳng thức xảy ra <=> x = 2.
Vậy nghiệm của phương trình : x = 2
đặt S=vế trái
ta có:S=\(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}\)
S=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)
ta thấy:\(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{1}=1\);\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{9}=3\)
→S\(\ge\)4; xét vế phải :\(-5-x^2+6x=4-\left(x-3\right)^2\)\(\le\)4
vậy pt xảy ra khi x-3=0↔x=3
(đề là -5 -x2+6x thì khả nghi hơn)
b/
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)
\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)
a,
\(\sqrt{9-12x+4x^2}=4\\ \sqrt{\left(3-2x\right)^2}=4\\ \left|3-2x\right|=4\\ \Rightarrow\left[{}\begin{matrix}3-2x=4\\3-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Bài 1:
a) \(\dfrac{\sqrt{x^2+2x+1}}{\left|x\right|-1}=\dfrac{\sqrt{\left(x+1\right)^2}}{\left|x-1\right|}=\dfrac{x+1}{\left|x\right|-1}\)
Bài 2:
a) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=0\) (1)
\(\Leftrightarrow\sqrt{x^2-2x+1}=-\sqrt{x^2-4x+4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x^2-2x+1}=0\\-\sqrt{x^2-4x+4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(\Leftrightarrow x\in\varnothing\)
Vậy phương trình (1) vô nghiệm.
Mình fix luôn đề nhé.
Ta có :
+) \(\sqrt{3x^2-18x+28}=\sqrt{3\left(x^2-6x+9\right)+1}\)
\(=\sqrt{3\left(x-3\right)^2+1}\ge1\forall x\)
+) \(\sqrt{4x^2-24x+45}=\sqrt{4\left(x^2-6x+9\right)+9}\)
\(=\sqrt{3\left(x-3\right)^2+9}\ge\sqrt{9}=3\forall x\)
Do đó \(VT\ge4\forall x\)
Xét \(VP=-5-x^2+6x\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=4-\left(x-3\right)^2\le4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\).
\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)
<=> \(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=4-\left(x^2-6x+9\right)\)
<=> \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=4-\left(x-3\right)^2\)
Có \(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{0+1}=1\)
\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{0+9}=3\)
=> VT=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge1+3=4\)
VP=\(4-\left(x-3\right)^2\le4\) với mọi x
=> Để VT=VP <=> \(x-3=0\) <=>x=3(t/m)
Vậy pt có nghiệm x=3