Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
giá trị của biểu thức \(\dfrac{2x+3}{x+2}\)lớn hơn 1. ĐKXĐ: x\(\ne-2\)
\(\Leftrightarrow\dfrac{2x+3}{x+2}>1\Leftrightarrow2x+3>x+2\)
\(\Leftrightarrow x>-1\)
Vậy với mọi giá trị x > -1 và x khác hai. ta có được giá trị x sao cho giá trị của biểu thức \(\dfrac{2x+3}{x+2}\)lớn hơn 1
Bài 2:
a, \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy..........
b,ĐK 20-x>0 <=> x<20
\(\Leftrightarrow\left[{}\begin{matrix}3x-6=20-x\\3x-6=x-20\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6,5\\x=-7\end{matrix}\right.\)
Vậy ...........
Bài 3:
Theo bất đẳng thức tam giác:
\(a< b+c\Leftrightarrow a^2< ab+ac\)
\(b< a+c\Leftrightarrow b^2=ab+bc\)
\(c< a+b\Leftrightarrow c^2< ac+bc\)
Cộng 3 vế lại, ta có đpcm
bài 1:
\(\dfrac{2x+3}{x+2}\)>1\(\Leftrightarrow\)\(\dfrac{2x+3}{x+2}>\dfrac{x+2}{x+2}\)\(\Rightarrow\)2x+3>x+2
\(\Rightarrow\)2x-x>2-3\(\Leftrightarrow\)x>-1
vậy x>-1 thì giá trị của biểu thức >1
bài 2:
a.với x<3\(\Leftrightarrow\)2x-5<3\(\Leftrightarrow\)/2x-5/=-(2x-5)
-2x+5=3\(\Leftrightarrow\)-2x=3-5\(\Leftrightarrow\)-2x=-2\(\Leftrightarrow\)x=1(k thỏa mãn)
với x>3\(\Leftrightarrow\)2x-5>3\(\Leftrightarrow\)/2x-5/=2x-5
2x-5=3\(\Leftrightarrow\)2x=3+5\(\Leftrightarrow\)2x=8\(\Leftrightarrow\)x=4(thỏa mãn)
vạy phương trình có tập nghiệm là S={4}
Ta có: ( a – b) 2 \(\ge\) 0 => a2 + b2 \(\ge\) 2ab
( b – c)2 \(\ge\) 0 => b2 + c2 \(\ge\) 2bc
( a – c)2 \(\ge\) 0 => a2 + c2 \(\ge\) 2ac
=> 2(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ac
=> a2 + b2 + c2 \(\ge\) ab + bc + ac (đpcm )
ta có : (a-b)2\(\ge0với\forall a,b\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)(1)
Cm tương tự ta được lần lượt : a2+c2\(\ge2ac\) với \(\forall a,c\)(2)
b2+c2\(\ge2bc\) với \(\forall b,c\)(3)
Cộng vế vế (1), (2)và (3):
a2+b2+c2+a2+b2+c2\(\ge2ab+2ac+2bc\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\left(đpcm\right)\)
Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!
mk đang cần gấp....<3<3<3<3<3<3
mình sẽ giải câu 3 cho bạn nhé
đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(\left(x+13\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
nhớ thank mk nhé
câu 5 nà
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)
<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)
=> điều phải chứng minh
c) Ta có a + b > 1 > 0 (1)
Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)
Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)
Bình phương 2 vế của (4): \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)
Cộng từng vế của (5) và (6): \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).
1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé
\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=3^{64}-1\)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
Bài 1:
\(\left|3x+1\right|=5+6x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=5+6x\\3x+1=-5-6x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1-5-6x=0\\3x+1+5+6x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x-4=0\\9x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};-\dfrac{2}{3}\right\}\)
Bài 2:
Giả sử : \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng )
⇒ đpcm
2.
a2 + b2 + c2 >= ab + ac + bc
<=> 2a2 + 2b2 + 2c2 >= 2 ab + 2ac + 2bc
<=> (a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) >= 0
<=> ( a - b)2 + ( a - c)2 + ( b - c)2 >= 0 ( luôn đúng với mọi a, b, c)