Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHÂN VỚI 4 TA CÓ
\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0
\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)
\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)
ĐẾN ĐAY BẠN TỰ GIẢI
\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)
đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành
\(\Leftrightarrow3x^2+mx-m=0\)
có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương
\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)
m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).
- \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
- \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
- \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
- \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)
\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)
thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành
\(3x^2=0\Leftrightarrow x=0\)
vậy cặp (x,y) nguyên là (0,-1)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
học lớp 6 thôi,sai thôi nhé
Ta có (1-2x)y=-32+5x-2
Do x nguyên nên 1-2x khác 0
=>y=\(\frac{3x^2-5x+2}{2x-1}\)<=>4y=\(\frac{12x^2-20x+8}{2x-1}\)=6x-7+\(\frac{1}{2x-1}\)
Do x,y là số nguyên =>\(\frac{1}{2x-1}\)là số nguyên,nên 2x-1 thuộc (1;-1).Từ đó tìm đc (x;y) là (1;0),(0;-2)
trả lời đúng có tích ko?