Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
2. x^2 + 3 = 5y
Hình học hình học:
- Tính chất
Mã mở
hình thức thay thế:
Giải pháp thực sự:
Mã mở
Dung dịch:
- Giải pháp từng bước
Mã mở
Dẫn xuất tiềm ẩn:
- Hơn
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
Câu 1/
\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(\left(2\right)\Leftrightarrow3xy-y=1+x\)
\(\Leftrightarrow y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)
\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)
Ta lại có:
\(y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)
Từ PT (1) ta có
\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)
Làm tiếp nhé
Câu 2/
a/ \(x^2-1=3\sqrt{3x+1}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow x^4-2x^2-27x-8=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)
Tới đây thì đơn giản rồi nhé
b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)
Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)
Thì ta có:
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
PS: Điều kiện xác định bạn tự làm nhé