K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

1. \(\sin^2x+\sin2x=3\cos^2x\Leftrightarrow\sin^2x+2\sin x\cos x-3\cos^2x=0\Leftrightarrow4\sin^2x+2\sin x\cos x-3=0\)

Vì \(\cos x=0\) không phải là nghiệm của phương trình, nên chia 2 vế pt cho \(\cos x\), ta đc:

\(4\tan^2x+2\tan x-\frac{3}{\cos^2x}=0\Leftrightarrow4\tan^2x+2\tan x-3\left(1+\tan^2x\right)=0\Leftrightarrow\tan^2x+2\tan x-3=0\)

Suy ra: \(\begin{matrix}\tan x=1\\\tan x=-3\end{matrix}\) suy ra x.

 

1 tháng 7 2015

b) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\sin2x\Leftrightarrow\sin\left(x+\frac{\pi}{4}\right)=\sin2x\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=2x+k2\pi\\x+\frac{\pi}{4}=\pi-2x+k2\pi\end{cases}\)

\(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}-k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{cases}\)

Vậy ....

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

NV
29 tháng 5 2020

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)

2 tháng 11 2023

d la sai

 

 

NV
2 tháng 3 2019

Giả sử các biểu thức đã cho đều xác định

a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)

b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)

\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)

c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)

\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)

NV
2 tháng 3 2019

d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)

\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)

e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)

\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)

\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)

f/ Bạn ghi đề sai à?

NV
16 tháng 4 2019

a/

\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)

\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)

b/

\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)

\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)

\(=\left(1-sinx+cosx\right)^2\)

c/

\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)

\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)

d/

\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)

NV
20 tháng 9 2020

c/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)

\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
20 tháng 9 2020

a/

\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)

\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)

\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/

\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)

\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
11 tháng 4 2019

\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)

\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)

\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)

\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)